Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the capacity of artificial intelligence techniques and statistical methods to deal with low-quality data in medical supply chain environments

dc.contributor.authorSantos Arteaga, Francisco Javier
dc.contributor.authorDi Caprio, Debora
dc.contributor.authorTavana, Madjid
dc.contributor.authorCucchiari, David
dc.contributor.authorCampistol, Josep M.
dc.contributor.authorOppenheimer, Federico
dc.contributor.authorDiekmann, Fritz
dc.contributor.authorRevuelta, Ignacio
dc.date.accessioned2025-01-14T09:18:42Z
dc.date.available2025-01-14T09:18:42Z
dc.date.issued2024
dc.description.abstractWe illustrate the capacity of Artificial Intelligence (AI) and Machine Learning (ML) techniques to preserve consistent categorization abilities whenever the quality of the data decreases, displaying mistakes or mismatches across matrix entries, while standard statistical methods exhibit significant modifications in the value of the corresponding coefficients. We design algorithms of different complexity to generate a series of comparable profiles. These profiles are compared within environments that allow for an immediate identification of the generating algorithms and within increasingly complex settings involving almost identical profiles derived from different algorithms. AI and ML techniques outperform standard statistical methods when distinguishing the algorithms generating the profiles. Building on these results, we perform a retrospective analysis where AI and ML techniques are applied to two empirical scenarios defined by different data series of patients transplanted through the period 2006–2019. The first scenario contains the variables describing the evolution of patients inputted correctly. In the second, we modify the content of the vectors of characteristics defining the evolution of patients by exchanging the values of a subset of realizations from two categorical variables. AI and ML techniques are consistently accurate when categorizing patients correctly within both scenarios, a feature particularly relevant when the quality of the information sources composing the medical chain varies. This latter problem is exacerbated among hospitals located in developing countries, where the quality of the data gathered limits their identification and extrapolation capacities.
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Comercio y Turismo
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSantos Arteaga, F. J., Di Caprio, D., Tavana, M., Cucchiari, D., Campistol, J. M., Oppenheimer, F., Diekmann, F., & Revuelta, I. (2024). On the capacity of artificial intelligence techniques and statistical methods to deal with low-quality data in medical supply chain environments. Engineering Applications of Artificial Intelligence, 133. https://doi.org/10.1016/J.ENGAPPAI.2024.108610
dc.identifier.doi10.1016/j.engappai.2024.108610
dc.identifier.issn0952-1976
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114152
dc.journal.titleEngineering Applications of Artificial Intelligence
dc.language.isoeng
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordInformation retrieval
dc.subject.keywordData quality
dc.subject.keywordArtificial neural networks
dc.subject.keywordRegression analysis
dc.subject.keywordSupply chains
dc.subject.keywordKidney transplantation
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmMedicina
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleOn the capacity of artificial intelligence techniques and statistical methods to deal with low-quality data in medical supply chain environments
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationc9e4f16c-37ee-48be-b56b-6b479d2b3cab
relation.isAuthorOfPublication.latestForDiscoveryc9e4f16c-37ee-48be-b56b-6b479d2b3cab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EAAI.pdf
Size:
6.32 MB
Format:
Adobe Portable Document Format

Collections