Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rotating relativistic stars: matching conditions and kinematical properties

dc.contributor.authorGonzález Romero, Luis Manuel
dc.date.accessioned2023-06-20T10:59:04Z
dc.date.available2023-06-20T10:59:04Z
dc.date.issued2003-03
dc.description©2003 The American Physical Society. The present work has been supported in part by DGICYT Project PB98-0772. The author wishes to thank F. J. Chinea, L. Fernández-Jambrina, F. Navarro-Lérida and M. J. Pareja for valuable discussions.
dc.description.abstractIn the framework of general relativity, a description of the matching conditions between two rotating perfect fluids spacetimes in terms of the kinematical properties of the fluids is introduced. The Einstein and Darmois equations are written using coordinates adapted to the boundary separating both spacetimes. The functions appearing in the equations have an immediate physical interpretation. The analysis is extended to the case of matching a perfect fluid spacetime (star interior) with a vacuum spacetime (gravitational field outside the star). By solving a boundary problem for a first order partial differential equation (‘‘master equation’’) we define an exterior tetrad such that the matching conditions and the Einstein equations, for this case, reproduce those of the two-fluid problem. The formalism is applied to a particular static spherically symmetric star and to the Kerr metric.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33010
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.67.064011
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51554
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDPB98-0772
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGeneral-relativity
dc.subject.keywordJunction conditions
dc.subject.keywordNeutron-stars
dc.subject.keywordSingular hypersurfaces
dc.subject.keywordGravitational-field
dc.subject.keywordThin shells
dc.subject.keywordModels
dc.subject.keywordEquations
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleRotating relativistic stars: matching conditions and kinematical properties
dc.typejournal article
dc.volume.number67
dcterms.references[1]. G. Darmois, Mémorial des Sciences Mathe´matiques (GauthierVillars, Paris, 1927), Vol. 25. [2]. A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Electromagnétism (Masson, Paris, 1955). [3]. S. O’Brien and J.L. Synge, Comm. Dublin Inst. Adv. Stud. Ser. A 9, 1 (1952). [4]. W. Israel, Nuovo Cimento B B44, 1 (1966). [5]. W.B. Bonnor and P.A. Vickers, Gen. Relativ. Gravit. 13, 29 (1981). [6]. L. Herrera and J. Jimenéz, Phys. Rev. D 28, 2987 (1983). [7] A.H. Taub, J. Math. Phys. 21, 1423 (1979). [8] C.J.S. Clarke and T. Dray, Class. Quantum Grav. 4, 265 (1987). [9]. C. Barrabes and W. Israel, Phys. Rev. D 43, 1129 (1991); C. Barrabes, Class. Quantum Grav. 6, 581 (1989). [10]. M. Mars and J.M.M. Senovilla, Class. Quantum Grav. 10, 1865 (1993). [11]. R. Vera, Class. Quantum Grav. 19, 5249 (2002). [12]. G. Neugebauer and R. Meinel, Phys. Rev. Lett. 73, 2166 (1994). [13]. M. Mars and J.M.M. Senovilla, Mod. Phys. Lett. A A 13, 1509 (1998). [14]. M. Bradley, G. Fodor, M. Marklud, and Z. Perjés, Class. Quantum Grav. 17, 351 (2000). [15]. E. Kyriakopoulos, Gen. Relativ. Gravit. 21, 125 (1989). [16] I. Hauser and F.J. Ernst, Gen. Relativ. Gravit. 33, 1985 (2001). [17] J.L. Friedman, J.R. Ipser, and L. Parker, Nature (London) 312, 255 (1984); Y. Eriguchi, I. Hachisu, and K. Nomoto, Mon. Not. R. Astron. Soc. 266, 179 (1994); M. Salgado, S. Bonazzola, E. Gourgoulhon, and P. Hanesel, Astron. Astrophys. 291, 155 (1994); G.B. Cook, S.L. Shapiro, and S.A. Teukolsky, Astrophys. J. 424, 823 (1994); N. Stergioulas and J.L. Friedman, ibid. 444, 306 (1995). [18] T. Nozawa, N. Stergioulas, E. Gourgoulhon, and Y. Eriguchi, Astron. Astrophys., Suppl. Ser. 132, 431 (1998); J.A. Font et al. Phys. Rev. D 65, 084024 (2002). [19]. S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev. D 58, 104020 (1998). [20]. F.J. Chinea and L.M. Gonza´lez-Romero, Class. Quantum Grav. 9, 1271 (1992). [21]. L.M. González-Romero, Class. Quantum Grav. 11, 2741 (1994). [22]. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, England, 1973). [23]. R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1965). [24]. The surface Σ is static in the sense that the induced metric admits a Killing field k =δ_t such that dk_↓˄k_↓ = 0 where k_↓ is the 1-form obtained from k using the induced metric.
dspace.entity.typePublication
relation.isAuthorOfPublication7b2418bd-138f-46a9-942a-85df3f006089
relation.isAuthorOfPublication.latestForDiscovery7b2418bd-138f-46a9-942a-85df3f006089

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezromero08libre.pdf
Size:
288.2 KB
Format:
Adobe Portable Document Format

Collections