Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The structure of the invariants of perfect Lie algebras

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Citations
Google Scholar

Citation

Abstract

Upper bounds for the number N(g) of Casimir operators of perfect Lie algebras g with nontrivial Levi decomposition are obtained, and in particular the existence of nontrivial invariants is proved. It is shown that for high-ranked representations R the Casimir operators of the semidirect sum s −→⊕ R(deg R)L1 of a semisimple Lie algebra s and an Abelian Lie algebra (deg R)L1 of dimension equal to the degree of R are completely determined by the representation R, which also allows the analysis of the invariants of subalgebras which extend to operators of the total algebra. In particular, for the adjoint representation of a semisimple Lie algebra the Casimir operators of s −→⊕ ad(s)(dims)L1 can be explicitly constructed from the Casimir operators of the Levi part s.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections