Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extremal states for photon number and quadratures as gauges for nonclassicality

dc.contributor.authorHradil, Z.
dc.contributor.authorŘeháček, J.
dc.contributor.authorHoz Iglesias, Pablo de la
dc.contributor.authorLeuchs, Gerd
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.date.accessioned2023-06-18T06:45:10Z
dc.date.available2023-06-18T06:45:10Z
dc.date.issued2015-04-27
dc.description©2015 American Physical Society. We thank G. Toth, H. de Guise, and B.-G. Englert for fruitful discussions. Z.H. and J.R. are thankful for the financial assistance of the Grant Agency of the Czech Republic (Grant No. 15-031945) and the IGA Project of the Palacky University (Grant No. PrF_2015_002). G.L. is partially funded by EU FP7 (Grant No. Q-ESSENCE). Finally, P.H. and L.L.S.-S. acknowledge the support from the Spanish MINECO (Grant No. FIS2011-26786) and UCM-Banco Santander Program (Grant No. GR3/14).
dc.description.abstractRotated quadratures carry the phase-dependent information of the electromagnetic field, so they are somehow conjugate to the photon number. We analyze this noncanonical pair, finding an exact uncertainty relation, as well as a couple of weaker inequalities obtained by relaxing some restrictions of the problem. We also find the intelligent states saturating that relation and complete their characterization by considering extra constraints on the second-order moments of the variables involved. Using these moments, we construct performance measures tailored to diagnose photon-added and Schrodinger-cat-like states, among others.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipGrant Agency of the Czech Republic
dc.description.sponsorshipIGA Project of the Palacky University
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipBanco Santander Central Hispano (BSCH)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30734
dc.identifier.doi10.1103/PhysRevA.91.042128
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.91.042128
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24033
dc.issue.number4
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final042128/6
dc.page.initial042128/1
dc.publisherAmerican Physical Society
dc.relation.projectIDQ-ESSENCE (248095)
dc.relation.projectIDFIS2011-26786
dc.relation.projectID15-031945
dc.relation.projectIDPrF_2015_002
dc.relation.projectIDGR3/14
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhase uncertainty
dc.subject.keywordEigenstate fields
dc.subject.keywordCoherent states
dc.subject.keywordQuantum
dc.subject.keywordGeneration
dc.subject.keywordOperators
dc.subject.keywordLight
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleExtremal states for photon number and quadratures as gauges for nonclassicality
dc.typejournal article
dc.volume.number91
dcterms.references[1] C. M. Caves, C. A. Fuchs, and R. Schack, Quantum probabilities as Bayesian probabilities, Phys. Rev. A 65, 022305 (2002). [2] R. W. Spekkens, Evidence for the epistemic view of quantum states: A toy theory, Phys. Rev. A 75, 032110 (2007). [3] M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the quantum state, Nat. Phys. 8, 475 (2012). [4] Quantum State Estimation, edited by M. G. A. Paris and J. Řeháček, LecturesNotes in PhysicsVol. 649 (Springer,Berlin, 2004). [5] U. M. Titulaer and R. J. Glauber, Correlation functions for coherent fields, Phys. Rev. 140, B676 (1965). [6] P. Carruthers and M. M. Nieto, Phase and angle variables in quantum mechanics, Rev. Mod. Phys. 40, 411 (1968). [7] R. Lynch, The quantum phase problem: A critical review, Phys. Rep. 256, 367 (1995). [8] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997). [9] V. Peřinova, A. Lukš, and J. Peřina, Phase in Optics (World Scientific, Singapore, 1998). [10] A. Luis and L. L. Sánchez-Soto, Quantum phase difference, phase measurements and quantum Stokes parameters, Prog. Opt. 41, 421 (2000). [11] N. Imoto, H. A. Haus, and Y. Yamamoto, Quantum nondemolition measurement of the photon number via the optical Kerr effect, Phys. Rev. A 32, 2287 (1985). [12] M. D. Levenson, R. M. Shelby, M. Reid, and D. F.Walls, Quantum nondemolition detection of optical quadrature amplitudes, Phys. Rev. Lett. 57, 2473 (1986). [13] H. F. Hofmann, T. Kobayashi, and A. Furusawa, Nonclassical correlations of photon number and field components in the vacuum state, Phys. Rev. A 62, 013806 (2000). [14] Z. Hradil, Noise minimum states and the squeezing and antibunching of light, Phys. Rev. A 41, 400 (1990). [15] Z. Hradil, Extremal properties of near-photon-number eigenstate fields, Phys. Rev. A 44, 792 (1991). [16] I. Urizar-Lanz and G. Tóth, Number-operator–annihilationoperator uncertainty as an alternative for the number-phase uncertainty relation, Phys. Rev. A 81, 052108 (2010). [17] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 2006). [18] U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 2005). [19] A. Lukš, V. Peřinova, and J. Peřina, Principal squeezing of vacuum fluctuations, Opt. Commun. 67, 149 (1988). [20] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, Weinheim, 2004). [21] V. V. Dodonov, Universal integrals of motion and universal invariants of quantum systems, J. Phys. A 33, 7721 (2000). [22] R. Loudon, Graphical representation of squeezed-state variances, Opt. Commun. 70, 109 (1989). [23] R. Tanaś, A. Miranowicz, and S. Kielich, Squeezing and its graphical representations in the anharmonic oscillator model, Phys. Rev. A 43, 4014 (1991). [24] J. H. Shapiro and S. S. Wagner, Phase and amplitude uncertainties in heterodyne detection, IEEE J. Quantum Electron. 20, 803 (1984). [25] P. Adam,M.Mechler, V. Szalay, and M. Koniorczyk, Intelligent states for a number-operator–annihilation-operator uncertainty relation, Phys. Rev. A 89, 062108 (2014). [26] J. Řeháček, Z. Bouchal, R. Čelechovský, Z. Hradil, and L. L. Sánchez-Soto, Experimental test of uncertainty relations for quantum mechanics on a circle, Phys. Rev. A 77, 032110 (2008). [27] Z.Hradil, J. Řeháček,A. B.Klimov, I. Rigas, and L. L. Sánchez-Soto, Angular performance measure for tighter uncertainty relations, Phys. Rev. A 81, 014103 (2010). [28] D. T. Pegg and S. M. Barnett, Phase properties of the quantized single-mode electromagnetic field, Phys. Rev. A 39, 1665 (1989). [29] I. Bialynicki-Birula, M. Freyberger, and W. Schleich, Various measures of quantum phase uncertainty: A comparative study, Phys. Scr. T48, 113 (1993). [30] A. Rojas González, J. A. Vaccaro, and S. M. Barnett, Entropic uncertainty relations for canonically conjugate operators, Phys. Lett. A 205, 247 (1995). [31] A. E. Rastegin, Entropic formulation of the uncertainty principle for the number and annihilation operators, Phys. Scr. 84, 057001 (2011). [32] A. E. Rastegin, Number-phase uncertainty relations in terms of generalized entropies, Quantum Inf. Comput. 12, 0743 (2012). [33] C. Aragone, G. Guerri, S. Salamo, and J. L. Tani, Intelligent spin states, J. Phys. A 7, L149 (1974). [34] D. T. Pegg, S. M. Barnett, R. Zambrini, S. Franke-Arnold, and M. Padgett, Minimum uncertainty states of angular momentum and angular position, New J. Phys. 7, 62 (2005). [35] R. Jackiw, Minimum uncertainty product, number–phase uncertainty product, and coherent states, J. Math. Phys. 9, 339 (1968). [36] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1. [37] H.Yuen, Generation, detection, and application of high-intensity photon-number-eigenstate fields, Phys. Rev. Lett. 56, 2176 (1986). [38] C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005). [39] M. Kitagawa and Y. Yamamoto, Number-phase minimumuncertainty state with reduced number uncertainty in a Kerr nonlinear interferometerr, Phys. Rev. A 34, 3974 (1986). [40] I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, Nonlinear cross-Kerr quasiclassical dynamics, New J. Phys. 15, 043038 (2013). [41] A. Wünsche, Displaced Fock states and their connection to quasiprobabilities, Quantum Opt. 3, 359 (1991). [42] G. S. Agarwal and K. Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A 43, 492 (1991). [43] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306, 660 (2004). [44] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Generation of optical ‘Schrödinger cats’ from photon number states, Nature (London) 448, 784 (2007). [45] E.V. Shchukin and W. Vogel, Nonclassicality moments and their measurements, Phys. Rev. A 72, 043808 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscovery88b797ff-cbd7-4498-a9c7-4e39f4fa4776

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SánchezSotoLL 01 LIBRE.pdf
Size:
622.76 KB
Format:
Adobe Portable Document Format

Collections