Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Oxygen to silicon ratio determination of SiOXHY thin films

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T10:44:17Z
dc.date.available2023-06-20T10:44:17Z
dc.date.issued2005-12-01
dc.description© 2005 Elsevier B.V. All rights reserved. The authors acknowledge C.A.I. de Implantación Iónica (U.C.M.) for technical support, and C.A.I. de Espectroscopía (U.C.M.) for availability of the FTIR spectrometer. This work was partially supported by the Spanish CICYT, under the contract TEC 2004-01237.
dc.description.abstractThe oxygen to silicon ratio of several SiOxHy thin films deposited by the electron cyclotron resonance plasma method was studied by several methods (heavy ion elastic recoil detection analysis, energy dispersive X-ray spectroscopy, Auger spectroscopy and infrared spectroscopy). Among these methods, other groups found that x scales linearly with the wavenumber of the Si-O-Si stretching vibration (nu(st)) by the relation x = 0.020 nu(st) - 19.3. This equation has been used by many different groups to determine x of SiOx thin films, but we have found that in our ECR deposited films the above mentioned formula gives accurate results for x values higher than 1.5, but for Si richer films the formula overestimates the x value, with values well outside the 20% accuracy range. A possible explanation of this discrepancy may be the bonded hydrogen of the films: in the plasma deposited samples used in this study the hydrogen content was high, above 20 at.% for silicon-rich samples. As a consequence, the Si-O-Si groups were immersed in a more electronegative matrix than in the usual case (SiOx with a low hydrogen concentration) and thus the variation of the position of the stretching peak was less pronounced.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish CICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26015
dc.identifier.doi10.1016/j.tsf.2005.06.049
dc.identifier.issn0040-6090
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.tsf.2005.06.049
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51113
dc.issue.number1-2
dc.journal.titleThin Solid Films
dc.language.isoeng
dc.page.final235
dc.page.initial232
dc.publisherElsevier Science SA
dc.relation.projectIDTEC 2004-01237
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordPhotoluminescence
dc.subject.keywordNanocrystals.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOxygen to silicon ratio determination of SiOXHY thin films
dc.typejournal article
dc.volume.number492
dcterms.references[1] F. Irrera, L. Marangelo, IEEE Trans. Electron Devices 47 (2000) 372. [2] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, H. Hofmeister, J. Appl. Phys. 82 (2002) 4678. [3] G. Franzò, A. Irrera, E.C. Moreira, M. Miritello, F. Iacoma, D. Sanfilippo, G. Di Stefano, P.G. Fallica, F. Priolo, Appl. Phys., A 74 (2002) 1. [4] L. Khriachtchev, S. Novikov, J. Lahtinen, J. App. Phys. 92 (2002) 5856. [5] L.X. Yi, J. Heitmann, R. Scholz, M. Zacharias, Appl. Phys. Lett. 81 (2002) 4248. [6] E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, F.J. López, J. Appl. Phys. 92 (2002) 1906. [7] D.V. Tsu, G. Lucovsky, B.N. Davidson, Phys. Rev., B 40 (1989) 1795. [8] B.J. Hinds, F. Wang, D.M. Wolfe, C.L. Hinkle, G. Lucovsky, J. Vac. Sci. Technol., B 16 (1998) 2171. [9] F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrie`re, E. Fogarassy, A. Slaoui, M. Froment, Phys. Rev., B 37 (1988) 6468. [10] D. Nesheva, I. Bineva, Z. Levi, Z. Aneva, Tx. Merdzhanova, J.C. Pivin, Vacuum 68 (2003) 1. [11] M. Zacharias, D. Dimova-Malinovska, M. Stutzmann, Phil. Mag., B 73 (1996) 799. [12] B.J. Hinds, F. Wang, D.M. Wolfe, C.L. Hinkle, G. Lucovsky, J. Non-Cryst. Solids 227 (1998) 507. [13] E. San Andrés, Á. Del Prado, I. Mártil, G. González-Díaz, F.L. Martí0nez, J. Vac. Sci. Technol., B 21 (2003) 1306. [14] F.L. Martínez, Á. Del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Rörich, B. Selle, I. Sieber, Phys. Rev., B 63 (2001) 245320. [15] P.V. Bulkin, P.L. Swart, B.M. Lacquet, J. Non Crys. Solids 226 (1998) 58. [16] W. Bohne, J. Röhrich, G. Röschert, Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 136–138 (1998) 633. [17] G.F. Bastin, H.J.M. Heijligers, Scanning 12 (1990) 225.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,36.pdf
Size:
114.46 KB
Format:
Adobe Portable Document Format

Collections