Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Asymptotic-behavior in incompressible Navier-Stokes equations

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We give a development up to the second order of strong solutions u of incompressible Navier-Stokes equations in R(n), n greater-than-or-equal-to 2 for several classes of initial data u0. The first term is the solution h(t) = G(t) * u0 of the heat equation taking the same initial data. A better approximation is provided by the divergence free solutions with initial data u0 of v(t) = DELTAv = -h(i) partial derivative(i) h - partial derivative(j) del E(n) * h(i) partial derivative(i) h(j) in R+ x R(n) where E(n) stands for the fundamental solution of -DELTA in R(n). For initial data satisfying some integrability conditions (and small enough, if n greater-than-or-equal-to 3) we obtain, for 1 less-than-or-equal-to q less-than-or-equal-to infinity, t(1/2)+(n/2) (1-(1/q))/delta(t)\\u(t)-v(t)\\q = t(1/2)+(n/2) (1-(1/q))/delta(t)\\u(t)-G(t)*u0+R(t)\\q --> 0 when t --> infinity, where delta(t) is equal to log t if n = 2 and to a constant if n greater-than-or-equal-to 3 and R (t) is a corrector term that we compute explicitely.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections