Infinite-time concentration in aggregation-diffusion equations with a given potential
dc.contributor.author | Carrillo, J. A. | |
dc.contributor.author | Gómez-Castro, D. | |
dc.contributor.author | Vázquez, J. L. | |
dc.date.accessioned | 2023-06-21T02:18:18Z | |
dc.date.available | 2023-06-21T02:18:18Z | |
dc.description.abstract | Typically, aggregation-diffusion is modeled by parabolic equations that combine linear or nonlinear diffusion with a Fokker-Planck convection term. Under very general suitable assumptions, we prove that radial solutions of the evolution process converge asymptotically in time towards a stationary state representing the balance between the two effects. Our parabolic system is the gradient how of an energy functional, and in fact we show that the stationary states are minimizers of a relaxed energy. Here, we study radial solutions of an aggregation-diffusion model that combines nonlinear fast diffusion with a convection term driven by the gradient of a potential, both in balls and the whole space. We show that, depending on the exponent of fast diffusion and the potential, the steady state is given by the sum of an explicit integrable function, plus a Dirac delta at the origin containing the rest of the mass of the initial datum. Furthermore, it is a global minimizer of the relaxed energy. This splitting phenomenon is an uncommon example of blow-up in inffinite time. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73996 | |
dc.identifier.issn | 0021-7824 | |
dc.identifier.officialurl | https://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65280 | |
dc.journal.title | Journal de Mathématiques Pures et Appliqués | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.projectID | Nonlocal-CPD (883363) | |
dc.relation.projectID | PGC2018-098440-B-I00 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Nonlinear parabolic equations | |
dc.subject.keyword | Nonlinear diffusion | |
dc.subject.keyword | Aggregation | |
dc.subject.keyword | Dirac delta formation | |
dc.subject.keyword | Blow-up in inffinite time | |
dc.subject.keyword | Viscosity solutions | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Infinite-time concentration in aggregation-diffusion equations with a given potential | |
dc.type | journal article | |
dc.volume.number | 157 | |
dcterms.references | H. Amann, Dynamic theory of quasilinear parabolic systems - III. Global existence, Math. Z. 205 (1) (1990) 331. MR1076139 L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR2401600 A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ. 26 (1–2) (2001) 43–100. MR1842428 J.M. Arrieta, A. Rodriguez-Bernal, P. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 3 (1) (2004) 1–15. MR2064964 D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal. 209 (3) (2013) 1055–1088. MR3067832 G. Barles, F. Da Lio, On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 83 (1) (2004) 53–75. MR2023054 P. Benilan, M. Crandall, The continuous dependence on φ of solutions of uy−Δφ(u)=0, Indiana Univ. Math. J. 30 (2) (1981) 161–177. MR0604277 A.L. Bertozzi, J.A. Carrillo, T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22 (3) (2009) 683–710. MR2480108 A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191 (2) (2009) 347–385. MR2481073 H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial data, J. Math. Pures Appl. 62 (1983) 73–97. MR0700049 G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Longman, Harlow, 1989. MR1020296 L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995. MR1351007 V. Calvez, J.A. Carrillo, F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., Theory Methods Appl. 159 (2017) 85–128. MR3659826 C. Cao, X. Li, Large Time Asymptotic Behaviors of Two Types of Fast Diffusion Equations, 2020. J.A. Carrillo, K. Craig, Y. Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, in: Active Particles, Vol. 2, in: Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019, pp. 65–108. MR3932458 J.A. Carrillo, M.G. Delgadino, Free energies and the reversed HLS inequality, arxiv preprint, https://arxiv.org/abs/1803.06232, 2018. J.A. Carrillo, M.G. Delgadino, J. Dolbeault, R.L. Frank, F. Hoffmann, Reverse Hardy–Littlewood–Sobolev inequalities, J. Math. Pures Appl. 132 (2019) 133–165. MR4030251 J.A. Carrillo, M.G. Delgadino, R.L. Frank, M. Lewin, Fast Diffusion Leads to Partial Mass Concentration in Keller-Segel Type Stationary Solutions, 2020. J.A. Carrillo, M.G. Delgadino, F.S. Patacchini, Existence of ground states for aggregation-diffusion equations, Anal. Appl. 17 (3) (2019) 393–423. MR3950320 J.A. Carrillo, A. Jüngel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte Math. 133 (1) (2001) 1–82. MR1853037 J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam. 19 (3) (2003) 971–1018. MR2053570 E. Chasseigne, J.L. Vazquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal. 164 (2) (2002) 133–187. MR1929929 M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order Partial Differential Equation, Bull. Am. Math. Soc. 27 (1) (1992) 1–67. MR1118699 M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. 9 (81) (2002) 847–875. MR1940370 F. Demengel, R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J. 33 (5) (1986) 673–709. MR0756154 E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer New York, New York, NY, 1993. MR1230384 S. Fornaro, S. Lisini, G. Savaré, G. Toscani, Measure valued solutions of sub-linear diffusion equations with a drift term, Discrete Contin. Dyn. Syst. 32 (5) (2012) 1675–1707. MR2871331 V.A. Galaktionov, J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations, in: Current Developments in Partial Differential Equations, Temuco, 1999, vol. 8, 2002, pp. 399–433. MR1897690 D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. MR1814364 H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkc. Ekvacioj 38 (1995) 101–120. MR1341739 P. Juutinen, P. Lindqvist, J.J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (3) (2003) 699–717. MR1871417 I.C. Kim, H.K. Lei, Degenerate diffusion with a drift potential: a viscosity solutions approach, Discrete Contin. Dyn. Syst. 27 (2) (2010) 767–786. MR2600689 O.A. Ladyzhenskaia, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, vol. 23, American Mathematical Soc., 1968. MR0241822 E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57 (2) (1977) 93–105. MR0471785 E.H. Lieb Sharp, Constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. 118 (2) (1983) 349. MR0717827 P.A. Markowich, C. Villani, On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis, in: VI Workshop on Partial Differential Equations, Part II, Rio de Janeiro, 1999, vol. 19, 2000, pp. 1–29. MR1812873 M. Medina, P. Ochoa, On viscosity and weak solutions for non-homogeneous p-Laplace equations, Adv. Nonlinear Anal. 8 (1) (2019) 468–481. MR3918385 N. Mizoguchi, P. Souplet, Singularity Formation and Regularization at Multiple Times in the Viscous Hamilton-Jacobi Equation, 2021. F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2) (2000) 361–400. MR1760620 A. Porretta, P. Souplet, Analysis of the loss of boundary conditions for the diffusive Hamilton-Jacobi equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (7) (2017) 1913–1923. MR3724761 A. Porretta, P. Souplet, Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation, J. Math. Pures Appl. 9 (133) (2020) 66–117. MR4044675 P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser Advanced Texts: Basel Textbooks), Birkhäuser/Springer, Cham, 2019, second edition of [MR2346798]. MR2346798 P. Souplet, J.L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst. 14 (1) (2006) 221–234. MR2170311 J.L. Vázquez, The Porous Medium Equation, Oxford University Press, 2006. MR2286292 J.L. Vázquez, M. Winkler, The evolution of singularities in fast diffusion equations: infinite-time blow-down, SIAM J. Math. Anal. 43 (4) (2011) 1499–1535. MR2821594 C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR1964483 Z. Yin, On the global existence of solutions to quasilinear parabolic equations with homogeneous Neumann boundary conditions, Glasg. Math. J. 47 (2) (2005) 237–248. MR2203490 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gomezcastro_infinitetime.pdf
- Size:
- 1.2 MB
- Format:
- Adobe Portable Document Format