Análisis de las distintas redes que se generan en Twitter para identificar el impacto de la Inteligencia Artificial en el consumo de agua
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Bajo el contexto de los diferentes artículos y post en redes sociales sobre el uso excesivo de agua para la refrigeración de los datacenters en los que se ejecuta ChatGPT sobre la inteligencia artificial, ha surgido la necesidad el presente Trabajo de Fin de Máster de abordar un análisis de redes en la propagación de la información, detectar temas o tópicos, también comunidades y líderes de opinión. Asimismo, se tiene como objetivo concluir si el impacto es negativo o positivo sobre el consumo de agua y a partir de esto plantear estrategias y medidas en base a los resultados obtenidos
Abstract: Under the context of the different articles and posts on social networks about the excessive use of water for the cooling of the data centers in which ChatGPT is executed on artificial intelligence, the need has arisen for this Master’s Thesis to address a network analysis in the propagation of information, detect themes or topics, also communities and opinion leaders. Also, the objective is to conclude whether the impact is negative or positive on water consumption and, from this, propose strategies and measures based on the results obtained.
Abstract: Under the context of the different articles and posts on social networks about the excessive use of water for the cooling of the data centers in which ChatGPT is executed on artificial intelligence, the need has arisen for this Master’s Thesis to address a network analysis in the propagation of information, detect themes or topics, also communities and opinion leaders. Also, the objective is to conclude whether the impact is negative or positive on water consumption and, from this, propose strategies and measures based on the results obtained.