Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Minimum phi-divergence estimator and hierarchical testing in loglinear models

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Statistica sinica
Citations
Google Scholar

Citation

Abstract

In this paper we consider inference based on very general divergence measures, under assumptions of multinomial sampling and loglinear models. We define the minimum phi-divergence estimator, which is seen to be a generalization of the maximum likelihood estimator. This estimator is then used in a phi-divergence goodness-of-fit statistic, which is the basis of two new statistics for solving the problem of testing a nested sequence of loglinear models.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections