Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sensitivity to hyperprior parameters in Gaussian Bayesian networks

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Our focus is on learning Gaussian Bayesian networks (GBNs) from data. In GBNs the multivariate normal joint distribution can be alternatively specified by the normal regression models of each variable given its parents in the DAG (directed acyclic graph). In the later representation the paramenters are the mean vector, the regression coefficients and the corresponding conditional variances. the problem of Bayesian learning in this context has been handled with different approximations, all of them concerning the use of different priors for the parameters considered we work with the most usual prior given by the normal/inverse gamma form. In this setting we are inteserested in evaluating the effect of prior hyperparameters choice on posterior distribution. The Kullback-Leibler divergence measure is used as a tool to define local sensitivity comparing the prior and posterior deviations. This method can be useful to decide the values to be chosen for the hyperparameters.

Research Projects

Organizational Units

Journal Issue

Description

Keywords