Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Mackey topology for groups

dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorChasco, M.J.
dc.contributor.authorTarieladze, Vaja
dc.date.accessioned2023-06-20T16:59:42Z
dc.date.available2023-06-20T16:59:42Z
dc.date.issued1999
dc.description.abstractThe present paper is a contribution to fill in a gap existing between the theory of topological vector spaces and that of topological abelian groups. Topological vector spaces have been extensively studied as part of Functional Analysis. It is natural to expect that some important and elegant theorems about topological vector spaces may have analogous versions for abelian topological groups. The main obstruction to get such versions is probably the lack of the notion of convexity in the framework of groups. However, the introduction of quasi-convex sets and locally quasi-convex groups by Vilenkin [26] and the work of Banaszczyk [1] have paved the way to obtain theorems of this nature. We study here the group topologies compatible with a given duality. We have obtained, among others, the following result: for a complete metrizable topological abelian group, there always exists a finest locally quasi-convex topology with the same set of continuous characters as the original topology. We also give a description of this topology as an G-topology and we prove that, for the additive group of a complete metrizable topological vector space, it coincides with the ordinary Mackey topology.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación
dc.description.sponsorshipInternational Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16692
dc.identifier.issn0039-3223
dc.identifier.officialurlhttp://matwbn.icm.edu.pl/ksiazki/sm/sm132/sm13235.pdf
dc.identifier.relatedurlhttp://journals.impan.gov.pl/sm/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57590
dc.issue.number3
dc.journal.titleStudia Mathematica
dc.language.isoeng
dc.page.final284
dc.page.initial257
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.relation.projectIDPB93-0454~C0201.
dc.relation.projectIDMXC200
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordlocally convex space
dc.subject.keywordMackey topology
dc.subject.keywordcontinuous character
dc.subject.keywordweakly compact
dc.subject.keywordlocally quasi-convex group
dc.subject.keywordduality.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn Mackey topology for groups
dc.typejournal article
dc.volume.number132
dcterms.referencesW. Banaszczyk, Additive Subgroups of Tapological Vector Spaces, Lecturo Notes in Mal.h. 1466, Springer, Berlin, 1991. W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact set for nuclear groups, in: Ann. New York Acad. Sci. 788, 1996, 34-39. N. Bourbaki, Espaces vectorielles topologiques, Masson, París, 1981. M. Bruguera, Some properties loacally quasi-convex groups, Topology Appl. 77 (1997),87- 94. M. J. Chasco and E. Martín-Peinador, Pontryagin reflexive groups are not determined bytheir continuos characters, Rocky Mountain J. Math. 28 (1998), 155- 160. W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. D. N. Dikranjan, L R. Pradanov anel L. N. Stoyanov, Topological Groups. Characters, Dualities and Minimal Group Topologies, Mareel Dekker, New York, 1990. I. Fleischer and T. Traynor, Continuity of homomorphisms on o Baíre group, Proc. Amer. Math. Soc. 93 (1985), 367-368. I. Glicksberg, Uniform boundedness for group., Canad. J. M.th. 14 (1962), 269-276. E. Howit t and K. A. Ross, Abstract iarmonic Analysis I, Grundlehren Math. Wlss. 115, Springer, 1963. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981. J. Kakol, Note on oompatible vector topologics, Proc. Amer. Math. Soc. 99 (1987), 690-692. J. Kakol, The Mackey-Arens theorem for non-locally convex spaces, Collect. Math. 41 (1990), 129- 132. J. Kakol, C. Pérez-García and W. Schikhof, Cardinality and Mackey topologies of non-Archimedian Banach and Fréchet spaces, Bull. Polish Acad. Sci. Math. 44 (1996), 131- 141. G. Kothe, Topological Vector Spaces I, Springer, Berlin, 1969. I. Labuda and Z. Lipecki, On subseries convergent series and m -quasi-bases in Topological linear spaces, Manuscripta Math. 38 (1982), 87-98. I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974) 515- 631. N. Nobl e, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970) , 551-561. B. J. Petti s, On continuity and openness of homomorphisms in topological groups, Ann. of Math. 52 (1950), 293- 308. D. R emus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993) 1195-1200. W. Roelcke and S. Dierolf, On the three-space problem for topological vector spaces , Collect. Math. 32 (1981 ), 3-25. H. H. Schaefer, Topological Vector Spaces, Springer, 1971. M. F. Smith, The Pontryagin duality theorem in linear spaces, Ann. of Math. 56 (1952), 248-253. J. P. Troallic, Sequential criteria for equicontinuity and uniformities on topological groups, Topology Appl. 68 (1996) , 83-95. N. T . Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 (1964), 467-516. N. Ya. Vilenkin, The theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 439-462 (in Russian). J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341- 364.
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication26c13c99-272d-4261-8a6b-caef686ac19b
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeina09.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format

Collections