Parametrization and Stress–Energy–Momentum Tensors in Metric Field Theories
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Gotay, Mark J | |
dc.contributor.author | Marsden, Jerrold E | |
dc.date.accessioned | 2023-06-20T10:36:02Z | |
dc.date.available | 2023-06-20T10:36:02Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We give an exposition of the 1972 parametrization method of Kuchar in the context of the multisymplectic approach to field theory. The purpose of the formalism developed here is to make any classical field theory, containing a metric as a sole background field, generally covariant (that is, parametrized, with the spacetime diffeomorphism group as a symmetry group) as well as fully dynamic. This is accomplished by introducing certain covariance fields as genuine dynamic fields. As we shall see, the multimomenta conjugate to these new fields form the Piola–Kirchhoff version of the stress–energy–momentum tensor field, and their Euler–Lagrange equations are vacuously satisfied. Thus, these fields have no additional physical content; they serve only to provide an efficient means of parametrizing the theory. Our results are illustrated with two examples, namely an electromagnetic field and a Klein–Gordon vector field, both on a background spacetime. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGSIC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21985 | |
dc.identifier.doi | 10.1088/1751-8113/41/34/344002 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.officialurl | http://iopscience.iop.org/1751-8121/41/34/344002/pdf/1751-8121_41_34_344002.pdf | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50722 | |
dc.issue.number | 34 | |
dc.journal.title | Journal of physics A: Mathematical and theoretical | |
dc.language.iso | eng | |
dc.page.final | 11 | |
dc.page.initial | 1 | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | MTM2007-60017 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.16 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Parametrization and Stress–Energy–Momentum Tensors in Metric Field Theories | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | Anderson J L 1967 Principles of Relativity Physics (New York: Academic) GotayMJ andMarsden J E 1992 Stress–energy–momentum tensors and the Belinfante–Rosenfeld formula Contemp. Math. 132 367–92 Gotay M J and Marsden J E 2008a Momentum Maps and Classical Fields in preparation Gotay M J and Marsden J E 2008b Parametrization theory, in preparation Isham C and Kuchar K 1985 Representations of spacetime diffeomorphisms: I. Canonical parametrized field theories Ann. Phys., NY 164 288–315 Kuchar K 1973 Canonical quantization of gravity Relativity, Astrophysics and Cosmology ed W Israel (Dordrecht:Reidel) pp 237–88 Marsden J E and Hughes T J R 1983 Mathematical Foundations of Elasticity (Englewood Cliffs, NJ: Prentice-Hall)Misner C W, Thorne K and Wheeler J A 1973 Gravitation (San Francisco: Freeman) Post E J 2007 Formal Structure of Electromagnetics: General Covariance and Electromagnetics (New York: Dover) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Castrillón-Parametrization.pdf
- Size:
- 207.57 KB
- Format:
- Adobe Portable Document Format