Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Parametrization and Stress–Energy–Momentum Tensors in Metric Field Theories

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorGotay, Mark J
dc.contributor.authorMarsden, Jerrold E
dc.date.accessioned2023-06-20T10:36:02Z
dc.date.available2023-06-20T10:36:02Z
dc.date.issued2008
dc.description.abstractWe give an exposition of the 1972 parametrization method of Kuchar in the context of the multisymplectic approach to field theory. The purpose of the formalism developed here is to make any classical field theory, containing a metric as a sole background field, generally covariant (that is, parametrized, with the spacetime diffeomorphism group as a symmetry group) as well as fully dynamic. This is accomplished by introducing certain covariance fields as genuine dynamic fields. As we shall see, the multimomenta conjugate to these new fields form the Piola–Kirchhoff version of the stress–energy–momentum tensor field, and their Euler–Lagrange equations are vacuously satisfied. Thus, these fields have no additional physical content; they serve only to provide an efficient means of parametrizing the theory. Our results are illustrated with two examples, namely an electromagnetic field and a Klein–Gordon vector field, both on a background spacetime.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDGSIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21985
dc.identifier.doi10.1088/1751-8113/41/34/344002
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://iopscience.iop.org/1751-8121/41/34/344002/pdf/1751-8121_41_34_344002.pdf
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50722
dc.issue.number34
dc.journal.titleJournal of physics A: Mathematical and theoretical
dc.language.isoeng
dc.page.final11
dc.page.initial1
dc.publisherIOP Publishing Ltd
dc.relation.projectIDMTM2007-60017
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleParametrization and Stress–Energy–Momentum Tensors in Metric Field Theories
dc.typejournal article
dc.volume.number41
dcterms.referencesAnderson J L 1967 Principles of Relativity Physics (New York: Academic) GotayMJ andMarsden J E 1992 Stress–energy–momentum tensors and the Belinfante–Rosenfeld formula Contemp. Math. 132 367–92 Gotay M J and Marsden J E 2008a Momentum Maps and Classical Fields in preparation Gotay M J and Marsden J E 2008b Parametrization theory, in preparation Isham C and Kuchar K 1985 Representations of spacetime diffeomorphisms: I. Canonical parametrized field theories Ann. Phys., NY 164 288–315 Kuchar K 1973 Canonical quantization of gravity Relativity, Astrophysics and Cosmology ed W Israel (Dordrecht:Reidel) pp 237–88 Marsden J E and Hughes T J R 1983 Mathematical Foundations of Elasticity (Englewood Cliffs, NJ: Prentice-Hall)Misner C W, Thorne K and Wheeler J A 1973 Gravitation (San Francisco: Freeman) Post E J 2007 Formal Structure of Electromagnetics: General Covariance and Electromagnetics (New York: Dover)
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Castrillón-Parametrization.pdf
Size:
207.57 KB
Format:
Adobe Portable Document Format

Collections