Plane structures in thermal runaway
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:05:16Z | |
dc.date.available | 2023-06-20T17:05:16Z | |
dc.date.issued | 1993-10 | |
dc.description.abstract | We consider the problem (1) u(t) = u(xx) + e(u) when x is-an-element-of R, t > 0, (2) u (x, 0) = u0(x) when x is-an-element-of R, where u0(x) is continuous, nonnegative and bounded. Equation (1) appears as a limit case in the analysis of combustion of a one-dimensional solid fuel. It is known that solutions of (1), (2) blow-up in a finite time T, a phenomenon often referred to as thermal runaway. In this paper we prove the existence of blow-up profiles which are flatter than those previously observed. We also derive the asymptotic profile of u(x, T) near its blow-up points, which are shown to be isolated. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT Grant | |
dc.description.sponsorship | EEC Contract | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17326 | |
dc.identifier.doi | 10.1007/BF02764836 | |
dc.identifier.issn | 0021-2172 | |
dc.identifier.officialurl | http://www.springerlink.com/content/g078m201p243232v/ | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57748 | |
dc.issue.number | 3 | |
dc.journal.title | Israel Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 341 | |
dc.page.initial | 321 | |
dc.publisher | Hebrew University Magnes Press | |
dc.relation.projectID | PB90-0235 | |
dc.relation.projectID | SC1-0019-C | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Semilinear heat-equations | |
dc.subject.keyword | point blow-up | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Plane structures in thermal runaway | |
dc.type | journal article | |
dc.volume.number | 81 | |
dcterms.references | S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. S. B. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545-568. A. Bressan, On the asymptotic shape of blow-up, Indiana Univ. Math. J. 39 (1990), 947-960. A. Bressan, Stable blow-up patterns, J. Diff. Equations 98 (1992), 57-75. J. Bebernes and S. Bricher, Final time blow-up profiles for semilinear parabolic equations via center manifold theory, SIAM J. Math. Anal. 23 (1992), 852-869. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied. Math. Sciences 83, Springer, Berlin, 1989. J. Bebernes, A. Bressan and D. Eberly, A description of blow-up for the solid fuel ignition model, Indiana Univ. Math. J. 36 (1987), 131-136. L. A. Caffarelli and A. Friedman, Blow-up of solutions of semilinear heat equations, J. Math. Anal. Appl. 129 (1988), 409-419. X. Y. Chen and H. Matano, Convergence, asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equations, J. Diff. Equations 78 (1989), 160-190. J. W. Dold, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985), 361-387. S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of ut - Delta(u) = uP, Comm. Pure Appl. Math. XLV (1992), 821-869. A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447. Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure. Appl. Math. 38 (1985), 297-319. Y. Giga and R. V. Kohn Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure. Appl. Math. 42 (1989), 845-884 V. A. Galaktionov and S. A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Equations 22 (1986), 1165-1173. V. A. Galaktionov, M. A. Herrero and J. J. L. Velázquez, The space structure near a blow-up point for semilinear heat equations: a formal approach, USSR Comput. Math. and Math. Physics 31 (1991), 399-411. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, to appear. M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral Equations 5 (1992), 973-997. M. A. Herrero and J. J. L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. in PDE 17 (1992), 205-219. F. B. Weissler, Single-point blow-up of semilinear initial value problems, J. Diff. Equations 55 (1984), 204-224. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1