Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Plane structures in thermal runaway

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:05:16Z
dc.date.available2023-06-20T17:05:16Z
dc.date.issued1993-10
dc.description.abstractWe consider the problem (1) u(t) = u(xx) + e(u) when x is-an-element-of R, t > 0, (2) u (x, 0) = u0(x) when x is-an-element-of R, where u0(x) is continuous, nonnegative and bounded. Equation (1) appears as a limit case in the analysis of combustion of a one-dimensional solid fuel. It is known that solutions of (1), (2) blow-up in a finite time T, a phenomenon often referred to as thermal runaway. In this paper we prove the existence of blow-up profiles which are flatter than those previously observed. We also derive the asymptotic profile of u(x, T) near its blow-up points, which are shown to be isolated.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT Grant
dc.description.sponsorshipEEC Contract
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17326
dc.identifier.doi10.1007/BF02764836
dc.identifier.issn0021-2172
dc.identifier.officialurlhttp://www.springerlink.com/content/g078m201p243232v/
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57748
dc.issue.number3
dc.journal.titleIsrael Journal of Mathematics
dc.language.isoeng
dc.page.final341
dc.page.initial321
dc.publisherHebrew University Magnes Press
dc.relation.projectIDPB90-0235
dc.relation.projectIDSC1-0019-C
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu536.2
dc.subject.keywordSemilinear heat-equations
dc.subject.keywordpoint blow-up
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titlePlane structures in thermal runaway
dc.typejournal article
dc.volume.number81
dcterms.referencesS. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. S. B. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545-568. A. Bressan, On the asymptotic shape of blow-up, Indiana Univ. Math. J. 39 (1990), 947-960. A. Bressan, Stable blow-up patterns, J. Diff. Equations 98 (1992), 57-75. J. Bebernes and S. Bricher, Final time blow-up profiles for semilinear parabolic equations via center manifold theory, SIAM J. Math. Anal. 23 (1992), 852-869. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Applied. Math. Sciences 83, Springer, Berlin, 1989. J. Bebernes, A. Bressan and D. Eberly, A description of blow-up for the solid fuel ignition model, Indiana Univ. Math. J. 36 (1987), 131-136. L. A. Caffarelli and A. Friedman, Blow-up of solutions of semilinear heat equations, J. Math. Anal. Appl. 129 (1988), 409-419. X. Y. Chen and H. Matano, Convergence, asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equations, J. Diff. Equations 78 (1989), 160-190. J. W. Dold, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985), 361-387. S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of ut - Delta(u) = uP, Comm. Pure Appl. Math. XLV (1992), 821-869. A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447. Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure. Appl. Math. 38 (1985), 297-319. Y. Giga and R. V. Kohn Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure. Appl. Math. 42 (1989), 845-884 V. A. Galaktionov and S. A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Equations 22 (1986), 1165-1173. V. A. Galaktionov, M. A. Herrero and J. J. L. Velázquez, The space structure near a blow-up point for semilinear heat equations: a formal approach, USSR Comput. Math. and Math. Physics 31 (1991), 399-411. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, to appear. M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral Equations 5 (1992), 973-997. M. A. Herrero and J. J. L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. in PDE 17 (1992), 205-219. F. B. Weissler, Single-point blow-up of semilinear initial value problems, J. Diff. Equations 55 (1984), 204-224.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero39.pdf
Size:
715.72 KB
Format:
Adobe Portable Document Format

Collections