Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unsupervised perceptual model for color image's segmentation

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Citations
Google Scholar

Citation

Sobrevilla, P., Gomez, D., Montero, J., Montseny, E.: Unsupervised Perceptual Model for Color Image’s Segmentation. En: NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society. pp. 349-354. IEEE, Detroit, MI, USA (2005)

Abstract

Color Segmentation is a fundamental, step in image understanding. Moreover, for getting accurate color image's segmentation algorithms, human being's perception of color should be considered. In this line we propose an unsupervised segmentation algorithm that is based on a fuzzy graph coloring process for representing the fuzzy color similarity degrees among neighboring pixels from a perceptual point of view. As main goal is to detect and extract the regions explaining the image, we stress the role of coloring procedures for unsupervised segmentation and fuzzy classification by means of useful, comprehensive and simple enough fuzzy graphical representations.

Research Projects

Organizational Units

Journal Issue

Description

Annual Meeting of the North-American-Fuzzy-Information-Processing-Society JUN 26-28, 2005

Keywords