Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Use of state‐of‐art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance

dc.contributor.authorSacie, Montserrat
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorLópez, Rafael
dc.contributor.authorPandit, Ravi
dc.date.accessioned2024-12-12T14:53:25Z
dc.date.available2024-12-12T14:53:25Z
dc.date.issued2022-07-08
dc.description.abstractOne of the most promising solutions that stands out to mitigate climate change is floating offshore wind turbines (FOWTs). Although they are very efficient in producing clean energy, the harsh environmental conditions they are subjected to, mainly strong winds and waves, produce structural fatigue and may cause them to lose efficiency. Thus, it is imperative to develop models to facilitate their deployment while maximizing energy production and ensuring the structure’s safety. This work applies machine learning (ML) techniques to obtain predictive models of the most relevant metocean variables involved. Specifically, wind speed, significant wave height, and the misalignment between wind and waves have been analyzed, pre-processed and modeled based on actual data. Linear regression (LR), support vector machines regression (SVR), Gaussian process regression (GPR) and neural network (NN)-based solutions have been applied and compared. The results show that Nonlinear autoregressive with an exogenous input neural network (NARX) is the best algorithm for both wind speed and misalignment forecasting in the time domain (72% accuracy) and GPR for wave height (90.85% accuracy). In conclusion, these models are vital to deploying and installing FOWTs and making them profitable.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSacie, M., Santos, M., López, R., & Pandit, R. (2022). Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance. Journal of Marine Science and Engineering, 10(7), 938.
dc.identifier.doihttps://doi.org/10.3390/jmse10070938
dc.identifier.officialurlhttps://www.mdpi.com/2077-1312/10/7/938
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112552
dc.issue.number7
dc.journal.titleJournal of Marine Science and Engineering
dc.language.isoeng
dc.page.initial938
dc.publisherMdpi
dc.relation.projectIDRTI2018-094902-B-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWind energy
dc.subject.keywordFloating offshore wind turbines
dc.subject.keywordMachine learning
dc.subject.keywordMisalignment
dc.subject.keywordForecasting
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleUse of state‐of‐art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Use_state_of_art_machine_learning_technologies .pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format

Collections