Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T18:49:53Z | |
dc.date.available | 2023-06-20T18:49:53Z | |
dc.date.issued | 1992 | |
dc.description.abstract | We consider the Cauchy problem (1) ut=uxx+up, x∈R, t>0, p>1, (2) u(x,0)=u0(x),x∈R, where u0(x) is continuous, nonnegative and bounded. Assume that the solution u(x,t) of (1), (2) blows up at x=0, t=T. We describe here the generic asymptotic behaviour of u(x,t) as (x,t) approaches (0,T) | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22718 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://gallica.bnf.fr/ark:/12148/bpt6k58688425/f205.image | |
dc.identifier.relatedurl | http://gallica.bnf.fr | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58723 | |
dc.issue.number | 3 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | fra | |
dc.page.final | 203 | |
dc.page.initial | 201 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 517.956.4 | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles | |
dc.type | journal article | |
dc.volume.number | 314 | |
dcterms.references | M. A. HERRERO et J. J. L. VELÁZQUEZ, Blow up behaviour of one dimensional semilinear parabolic équations, Ann. Inst. Henri Poincaré (à paraître). M. A. HERRERO et J. J. L. VELÁZQUEZ, Flat blow up in one-dimensional semilinear heat équations, Diff. and Intégral Equations (à paraître). S. FILIPPAS et R. V. KOHN, Refined asymptotics for the blow-up of ut—u = up (à paraître). F. MERLE, Solution of a nonlinear heat équation with arbitrarily given blow-up points (à paraître). M. A. HERRERO et J. J. L. VELÁZQUEZ, Blow up profiles in one-dimensional, semilinear parabolic problems, Comm. in P.D.E. (à paraître). M. A. HERRERO et J. J. L. VELÁZQUEZ, Generic behaviour of one-dimensional blow-up patterns (à paraître) | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1