Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Efficiency of chitosans for the treatment of papermaking process water by dissolved air flotation

dc.contributor.authorMiranda Carreño, Rubén
dc.contributor.authorNicu, Raluca
dc.contributor.authorLatour Romero, Isabel
dc.contributor.authorLupei, Mihail
dc.contributor.authorBobu, Elena
dc.contributor.authorBlanco Suárez, María Ángeles
dc.date.accessioned2023-06-19T13:24:59Z
dc.date.available2023-06-19T13:24:59Z
dc.date.issued2013
dc.description.abstractInterest has grown in bio-polymers as being environmental friendly alternatives to synthetic additives. In this work, two native chitosans with different molecular weights have been evaluated on a laboratory scale for their effectiveness for the removal of contaminants from papermaking process waters by dissolved air flotation (DAF). The use of chitosan quaternary derivatives and the use of the native chitosans in combination with anionic bentonite microparticles have also been tested. Results demonstrate a high efficiency of the native chitosan products at intermediate dosages and furthermore, their efficiency is enhanced by the combined addition of bentonite. For an equivalent removal of contaminants, the required dosage of chitosan is about half that the dosage required in absence of bentonite. Quaternary derivatives have not improved the efficiency of the native chitosan in this case. The optimum treatment would be 50 mg/L of native chitosan and 100 mg/L of bentonite where this treatment is capable of the removal of 83- 89% turbidity (residual turbidity 210-320 NTU), 68-71% dissolved turbidity (residual dissolved turbidity of 22-24 NTU), 18-22% total solids (residual total solids of 2750-2900 mg/L) and 19-23% COD (1440-1525 mg/L). The low molecular weight native chitosan is more efficient than the medium molecular weight chitosan in all cases. The Focused Beam Reflectance Measurement (FBRM) is used to assess the aggregation process and to predict the separation efficiency of DAF units either with single or dual systems. The efficiency predicted through the FBRM technique is very similar to that obtained later in the DAF tests.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Educación y Ciencia (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26405
dc.identifier.citationMiranda, Ruben, et al. «Efficiency of Chitosans for the Treatment of Papermaking Process Water by Dissolved Air Flotation». Chemical Engineering Journal, vol. 231, septiembre de 2013, pp. 304-13. DOI.org (Crossref), https://doi.org/10.1016/j.cej.2013.07.033.
dc.identifier.doi10.1016/j.cej.2013.07.033
dc.identifier.issn1385-8947
dc.identifier.officialurlhttps://doi.org/10.1016/j.cej.2013.07.033.
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33610
dc.journal.titleChemical Engineering Journal
dc.language.isoeng
dc.page.final313
dc.page.initial304
dc.publisherElsevier
dc.relation.hasversionAM
dc.relation.projectIDPROLIPAPEL II (S2009/AMB-1480)
dc.relation.projectIDPERFORM-ERA (ID-57649)
dc.relation.projectIDEURODOC (ID-59410)
dc.rights.accessRightsopen access
dc.subject.cdu676
dc.subject.cdu66
dc.subject.keywordChitosan
dc.subject.keywordFlocculation
dc.subject.keywordBentonite
dc.subject.keywordDissolved air flotation
dc.subject.keywordPapermaking process water
dc.subject.ucmIndustria del papel
dc.subject.ucmIngeniería química
dc.subject.ucmMedio ambiente
dc.subject.ucmQuímica industrial
dc.subject.unesco3312.13 Tecnología de la Madera
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco2391 Química Ambiental
dc.titleEfficiency of chitosans for the treatment of papermaking process water by dissolved air flotation
dc.typejournal article
dc.volume.number231
dcterms.references[1] R. Miranda, A. Blanco, C. Negro, Accumulation of dissolved and colloidal material in papermaking – Application to simulation, Chem. Eng. J. 148 (2009) 385-393. [2] G. Bourgogne, J.E. Laine, A review of the effects of reduced water consumption on the wet end of the paper machine and the quality of water, Pap. Puu-Pap. Timb. 83 (2001) 190-203. [3] A. Blanco, C. Negro, C. Monte, H. Fuente, J. Tijero, Overview of two major deposit problems in recycling: slime and stickies. Part II: stickies problems in recycling, Prog. Pap. Recycl. 11 (2002) 26-37. [4] H.K. Lee, C.H. Ham, S.G. Lee, Influence of papermaking system closure on paper properties, Tappi J. 5 (2006) 27–31. [5] Y. Ben, G. Dorris, G. Hill, J. Allen, Contaminant removal from deinking process water. Part I: Mill benchmarking, Pulp Pap. Can. 104 (2003) 42-48. [6] A.H. Basta, H. Zhan, B. He, X. Wang, G. Zao, J. Chen, Cleaning efficiency of process water in newsprint mill, Prog. Pap. Recycl. 13 (2004) 13-22. [7] A. Roring, E. Wackerberg, Characterization of deinking white water – Influence on flotation and bleaching efficiency, Pulp Pap. Can. 98 (1997) 17-21. [8] R. Miranda, A. Blanco, E. Fuente, C. Negro, Separation of contaminants from deinking process water by dissolved air flotation: effect of flocculant charge density, Sep. Sci. Technol. 43 (2008) 3732–3754. [9] R. Miranda, C. Negro, A. Blanco, Internal treatment of process waters in paper production by dissolved air flotation with newly developed chemicals. 1. Laboratory tests, Ind. Eng. Chem. Res. 48 (2009) 2199–2205. [10] R. Miranda, C. Negro, A. Blanco, Internal treatment of process waters in paper production by dissolved air flotation with newly developed chemicals. 2. Field trials, Ind. Eng. Chem. Res. 48 (2009) 3672-3677. [11] S.A. Ali, S. Pal, R.P. Singh, Flocculation performance of modified chitosan in an aqueous suspension, J. Appl. Polym. Sci. 118 (2010) 2592-2600. [12] T. Chatterjee, S. Chatterjee, S.H. Woo, Enhanced coagulation of bentonite particles in water by a modified chitosan biopolymer, Chem. Eng. J. 148 (2009) 414–419. [13] S. Bratskaya, S. Schwarz, D. Chervonetsky, Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate, Water Res. 38 (2004) 2955–2961. [14] D. Belosinschi, E. Bobu. Effects of coagulants on the DCS’accumulation in process water of papermaking, Env. Eng. Manage. J. 7 (2008) 269-277. [15] E. Bobu, R. Nicu, J. Desbriers, Chitosan as cationic polyelectrolyte in wet-end papermaking systems, Cellul. Chem. Technol. 45 (2011) 105-111. [16] W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, W.H. Daly, Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity, Carbohydr. Res. 344 (2009) 2502-2511. [17] W. Sajomsang, Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review, Carbohydr. Polym. 80 (2010) 631-647. [18] H. Li, Y. Du, X. Wu, H. Zhan, Effect of molecular weight and degree of substitution of quaternary chitosan on its adsorption and flocculation properties for potential retention-aids in alkaline papermaking. Colloids Surf., A 242 (2004) 1-8. [19] J.-P. Wang, W.-Z. Chen, S.-J. Yuan, G.-P. Sheng, H.-Q. Yu, Synthesis and characterization of a novel cationic chitosan-based flocculant with a higher water-solubility for pulp mill wastewater treatment, Water Res. 43 (2009) 5267-5275. [20] F. Renault, B. Sancey, P.-M. Badot, G. Crini, Chitosan for coagulation/flocculation processes An eco-friendly approach, Eur. Polym. J. 45 (2009) 1337-1348. [21] C. Huang, S. Chen, J.R. Pan, Optimal condition for modification of chitosan: a biopolymer for coagulation of colloidal particles, Water Res. 34 (2000) 1057–1062. [22] Z.-S. Cai, C.-S. Yang, X.-M. Zhu, Preparation of quaternized carboxymethyl chitosan and its capacity to flocculate COD from printing wastewater. J. Appl. Polym. Sci. 118 (2010) 299-305. [23] R. Nicu, R. Miranda, E. Bobu, A. Blanco, Improved efficiency of chitosans with bentonites for the retention and drainage of pulp suspensions. Submittted to Bioresources (2013). [24] S. Syafalni, I. Abustan, S.F. Zakaria, M.H. Zawawi, R.A. Rahim. Raw water treatment using bentonite-chitosan as coagulant. Wat. Sci. Tec. Wat. Supl. 12 (2012), 480-488. [25] Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 21st ed., United States, 2005. [26] A. Blanco, E. Fuente, C. Negro, J. Tijero, Flocculation monitoring: Focused beam reflectance measurement as a measurement tool, Can. J. Chem. Eng. 80 (2002) 734-740. [27] C. Negro, A. Blanco, V. Saarimaa, J. Tijero, Optimization of pitch removal by dissolved air flotation in a Eucalyptus kraft mill, Sep. Sci. Technol. 40 (2005) 1129-1143. [28] V. Saarimaa, A. Sundberg, B. Holmbom, A. Blanco, E. Fuente, C. Negro, Monitoring of dissolved air flotation by focused beam reflectance measurement, Ind. Eng. Chem. Res. 45 (2006) 7256-7263. [29] V. Saarimaa, A. Sundberg, B.H. Holmbom, A. Blanco, C. Negro, E. Fuente, Purification of peroxide-bleached TMP water by dissolved air flotation, Tappi J. 5 (2006), 15-21. [30] R. Nicu, E. Bobu, R. Miranda, A. Blanco, Flocculation efficiency of chitosan for papermaking applications, Bioresources 8 (2013) 768-784. [31] J. Roussy, M. van Vooren, B.A. Dempsey, E. Guibal, Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions, Water Res. 39 (2005) 3247-3258. [32] J. Liu, Charge of papermaking system - what role it plays in paper mills, Pap. Technol. 42 (2001) 29-31. [33] R. Rojas-Reyna, S. Schwarz, G. Heinrich, G. Petzold, S. Schütze, J. Bohrisch, Flocculation efficiency of modified water soluble chitosan versus commonly used commercial polyelectrolytes, Carbohydr. Polym. 81 (2010) 317-322. [34] T.S. Huuha, T.A. Kurniawan, M.E.T. Sillanpää, Removal of silicon from pulping whitewater using integrated treatment of chemical precipitation and evaporation, Chem. Eng. J. 158 (2010) 369-646. [35] D. Hermosilla, R. Ordóñez, L. Blanco, E. de la Fuente, A. Blanco, pH and particle structure effects on silica removal by coagulation. Chem. Eng. Technol. 35 (2012) 1632-1640. [36] I. Latour, R. Miranda, A. Blanco, Silica removal from newsprint mill effluents with aluminum salts. Chemical Engineering Journal (2013), doi: http://dx.doi.org/10.1016/j.cej.2013.06.039.
dspace.entity.typePublication
relation.isAuthorOfPublication75f551fb-7e58-4699-b2da-57c2e326b03c
relation.isAuthorOfPublication04f905d2-6294-4530-9d01-062828ddefb2
relation.isAuthorOfPublication.latestForDiscovery75f551fb-7e58-4699-b2da-57c2e326b03c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Efficiency_of_Chitosans.pdf
Size:
350.47 KB
Format:
Adobe Portable Document Format

Collections