Photoacoustic characterization of transient defects in potassium dihydrogen phosphate crystals

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorTorchia, Gustavo Adrián
dc.contributor.authorBilmes, Gabriel M.
dc.contributor.authorTocho, Jorge Omar
dc.date.accessioned2023-06-20T10:42:03Z
dc.date.available2023-06-20T10:42:03Z
dc.date.issued2004-06
dc.description©2004 The American Physical Society. We thank H. F. Ranea Sandoval for participating in many useful discussions. This work was partially financed by Projects (Grant Nos. 11X/324 and 11/I 067) of Universidad Nacional de La Plata and Project (Grant No. 03-08852) of ANPCYT.
dc.description.abstractTransient defects in potassium dihydrogen phosphate (KDP) were characterized by using the acoustic signals generated in the crystal when it is impinged with pulsed laser radiation. These defects are produced by simultaneous absorption of two λ=266nm photons and they show linear absorption in the visible and UV spectral region. The decay kinetics of the defects has been studied by a new method based on the analysis of the acoustic signal generated by visible pulses. The acoustic measurement of the decay time shows a nonexponential decay and it is free from thermal lensing or beam deformation by other causes, effects that can alter the pure optical measurements. We propose that the origin of the photoacoustic signal is the heat released by the deexcitation of the energy levels of the defects when they are excited by visible pulses. This mechanism, optical absorption and nonradiative relaxation of defects, could be the reason for some depletion in the yield of several devices based on KDP. This phenomena must be carefully taken in account, when KDP crystals are used in combination with Nd:YAG (YAG, yttrium aluminum garnet) lasers for second-harmonic generation from λ=532nm to λ=266nm.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Nacional de La Plata, Argentina.
dc.description.sponsorshipAgencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Argentina.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25256
dc.identifier.doi10.1103/PhysRevB.69.224102
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.69.224102
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51027
dc.issue.number22
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID11X/324
dc.relation.projectID11/I 067
dc.relation.projectID03-08852
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptical-Absorption
dc.subject.keywordLuminescence Experiments
dc.subject.keywordQuantum-Efficiency
dc.subject.keywordPhase-Transitions
dc.subject.keywordKh2po4 Crystals
dc.subject.keywordKDP
dc.subject.keywordDamage
dc.subject.keywordDKDP
dc.subject.keywordADP
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePhotoacoustic characterization of transient defects in potassium dihydrogen phosphate crystals
dc.typejournal article
dc.volume.number69
dcterms.references1. E. Dieguez and J.M. Cabrera, J. Phys. D 14, 91 (1981). 2. E. Dieguez, J.M. Cabrera, and F. Agullo-Lopez, J. Chem. Phys. 81, 3369 (1984). 3. S.D. Setzler, K.T. Stevens, L.E. Halliburton, M. Yan, N.P. Zaitseva, and J.J. Deyoreo, Phys. Rev. B 57, 2643 (1998). 4. J.A. McMillan and J.M. Clemens, J. Chem. Phys. 68, 3627 (1978). 5. K. Tsuchida, R. Abe, and M. Naito, J. Phys. Soc. Jpn. 35, 806 (1973). 6. V.I. Salo, L.V. Atroschenko, M.I. Kolybayeva, and E.V. Scherbina, Proc. SPIE 3578, 529 (1999). 7. I.N. Ogorodnikov, V. Yu Yakovlev, B.V. Shulgin, and M.K. Satybaldieva, Phys. Solid State 44, 880 (2002). 8. J.E. Davis, R.S. Hughes, and H.W.H. Lee, Chem. Phys. Lett. 207, 540 (1993). 9. C.D. Marshall, S.A. Payne, M.A. Henesian, J.A. Speath, and H.T. Powell, J. Opt. Soc. Am. B 11, 774 (1994). 10. S.G. Demos, M. Yan, M. Staggs, J.J. De Yoreo, and H.B. Radousky, Appl. Phys. Lett. 72, 2367 (1998). 11. J.O. Tocho, R. Ramirez, and J.A. Gonzalo, Appl. Phys. Lett. 59, 1684 (1991). 12. D. Orzi and J.O. Tocho, J. Phys. IV 7, 245 (1994). 13. M. Mesaros, O.E. Martínez, G.M. Bilmes, and J.O. Tocho, J. Appl. Phys. 81, 1 (1997). 14. D.J. Orzi, N. Mingolo, G.M. Bilmes, J.O. Tocho, and O.E. Martínez, Appl. Phys. B: Lasers Opt. 66, 245 (1998). 15. E. Rodríguez, J.O. Tocho, and F. Cussó, Phys. Rev. B 47, 14 049 (1993). 16. G.A. Torchia, J.A. Muñoz, F. Cusso, F. Jaque, and J.O. Tocho, J. Lumin. 92, 317 (2001). 17. J.O. Tocho, G.M. Bilmes, and H.F. Ranea Sandoval, Appl. Phys. B: Lasers Opt. 69, 473 (1999). 18. P.B. Braunlich, S.C. Jones, X. Shen, and R.T. Casper, Nucl. Instrum. Methods Phys. Res. B 46, 224 (1990). 19. Lasermetrics, Inc., Teaneck, NJ 07666, USA. 20. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, Berlin, 1999), Vol. 64, p. 79. 21. J.E. Tucker, C.L. Marquardt, S.R. Bowman, and B.J. Feldman, Appl. Opt. 34, 2678 (1995). 22. M.M. Chirila, N.Y. Garces, L.E. Halliburton, S.G. Demos, T.A. Land, and H.B. Radousky, J. Appl. Phys. 94, 6456 (2003).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos23libre.pdf
Size:
65.46 KB
Format:
Adobe Portable Document Format

Collections