Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Global Approximation of Convex Functions by Differentiable Convex Functions on Banach Spaces.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Heldermann Verlag
Citations
Google Scholar

Citation

Abstract

We show that if X is a Banach space whose dual X* has an equivalent locally uniformly rotund (LUR) norm, then for every open convex U subset of X, for every real number epsilon > 0, and for every continuous and convex function f : U -> R (not necessarily bounded on bounded sets) there exists a convex function g : U -> R of class C-1 (U) such that f - epsilon <= g <= f on U. We also show how the problem of global approximation of continuous (not necessarily bounded on bounded sets) convex functions by C-k smooth convex functions can be reduced to the problem of global approximation of Lipschitz convex functions by C-k smooth convex functions.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections