Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Are Forecast Updates Progressive?

dc.contributor.authorChang, Chia-Lin
dc.contributor.authorFranses, Philip Hans
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-20T09:12:41Z
dc.date.available2023-06-20T09:12:41Z
dc.date.issued2011-03
dc.descriptionJEL Classifications: C53, C22, E27, E37.
dc.description.abstractMany macro-economic forecasts and forecast updates, such as those from the IMF and OECD, typically involve both a model component, which is replicable, as well as intuition (namely, expert knowledge possessed by a forecaster), which is non-replicable. . Learning from previous mistakes can affect both the replicable component of a model as well as intuition. If learning, and hence forecast updates, are progressive, forecast updates should generally become more accurate as the actual value is approached. Otherwise, learning and forecast updates would be neutral. The paper proposes a methodology to test whether macro-economic forecast updates are progressive, where the interaction between model and intuition is explicitly taken into account. The data set for the empirical analysis is for Taiwan, where we have three decades of quarterly data available of forecasts and their updates of two economic fundamentals, namely the inflation rate and real GDP growth rate. The empirical results suggest that the forecast updates for Taiwan are progressive, and that progress can be explained predominantly by improved intuition.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.sponsorshipNational Science Council, Taiwan
dc.description.sponsorshipAustralian Research Council
dc.description.sponsorshipJapan Society for the Promotion of Science
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12434
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/48971
dc.issue.number03
dc.language.isoeng
dc.page.total24
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.keywordMacro-economic forecasts
dc.subject.keywordEconometric models
dc.subject.keywordIntuition
dc.subject.keywordlearning
dc.subject.keywordProgressive forecast updates
dc.subject.keywordForecast errors
dc.subject.ucmEconometría (Economía)
dc.subject.ucmMacroeconomía
dc.subject.unesco5302 Econometría
dc.subject.unesco5307.14 Teoría Macroeconómica
dc.titleAre Forecast Updates Progressive?
dc.typetechnical report
dc.volume.number2011
dcterms.referencesBunn, D.W. and A.A. Salo (1996), Adjustment of forecasts with model consistent expectations, International Journal of Forecasting, 12, 163-170. Chang, C.-L., P.H. Franses and M. McAleer (2009), How accurate are government forecasts of economic fundamentals? The case of Taiwan, to appear in International Journal of Forecasting. Available at SSRN: http://ssrn.com/abstract=1431007. Clark, T.E. and M.W. McCracken (2001), Tests of equal forecast accuracy and encompassing for nested models, Journal of Econometrics, 105, 85-110. Fiebig, D.G., M. McAleer and R. Bartels (1992), Properties of ordinary least squares estimators in regression models with non-spherical disturbances, Journal of Econometrics, 54, 321-334. Franses, P.H., M. McAleer and R. Legerstee (2009), Expert opinion versus expertise in forecasting, Statistica Neerlandica, 63, 334-346. McAleer, M. (1992), Efficient estimation: the Rao-Zyskind condition, Kruskal's theorem and ordinary least squares, Economic Record, 68, 65-72. McAleer, M. and C. McKenzie (1991), When are two step estimators efficient?, Econometric Reviews, 10, 235-252. Oxley, L. and M. McAleer (1993), Econometric issues in macroeconomic models with generated regressors, Journal of Economic Surveys, 7, 1-40. Pagan, A.R. (1984), Econometric issues in the analysis of regressions with generated regressors, International Economic Review, 25, 221-247. Smith, J. and M. McAleer (1994), Newey-West covariance matrix estimates for models with generated regressors, Applied Economics, 26, 635-640. Welch, B.L. (1951). On the comparison of several mean values: An alternative approach, Biometrika, 38, 330-336.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1103.pdf
Size:
162.42 KB
Format:
Adobe Portable Document Format