Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Shape index, Brouwer degree and Poincaré-Hopf theorem

dc.contributor.authorSanjurjo, José M. R.
dc.contributor.authorBarge Yáñez, Héctor
dc.date.accessioned2023-06-22T12:43:39Z
dc.date.available2023-06-22T12:43:39Z
dc.date.issued2023
dc.description.abstractIn this paper we study the relationship of the Brouwer degree of a vector field with the dynamics of the induced flow. Analogous relations are studied for the index of a vector field. We obtain new forms of the Poincaré-Hopf theorem and of the Borsuk and Hirsch antipodal theorems. As an application, we calculate the Brouwer degree of the vector field of the Lorenz equations in isolating blocks of the Lorenz strange set.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77082
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73101
dc.language.isoeng
dc.relation.projectIDPID2021-126124NB-I00
dc.rights.accessRightsopen access
dc.subject.cdu515.122.4
dc.subject.keywordShape index
dc.subject.keywordBrouwer degree
dc.subject.keywordPoincaré-Hopf theorem
dc.subject.keywordNon-saddle set
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleShape index, Brouwer degree and Poincaré-Hopf theorem
dc.typejournal article
dcterms.references[1] H. Barge. Regular blocks and Conley index of isolated invariant continua in surfaces. Nonlinear Anal., 146:100–119, 2016. [2] H. Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete Contin. Dyn. Syst., 41(6):2677–2698, 2021. [3] H. Barge and J.M.R. Sanjurjo. Unstable manifold, Conley index and fixed points of flows. J. Math. Anal. Appl., 420(1):835–851, 2014. [4] H. Barge and J.M.R. Sanjurjo. Bifurcations and attractor-repeller splittings of non-saddle sets. J. Dyn. Diff. Equat., 30(1):257–272, 2018. [5] H. Barge and J.M.R. Sanjurjo. Dissonant points and the region of influence of non-saddle sets. J. Differential Equations, 268(9):5329–5352, 2020. [6] N.P. Bhatia and G.P. Szegö. Stability Theory of Dynamical Systems. Classics in Mathematics. Springer, 2002. [7] K. Borsuk. Theory of Shape. Monografie Matematyczne 59. Polish Scientific Publishers, Warsaw, 1975. [8] C. Conley. Isolated Invariant Sets and the Morse Index. In CBMS Regional Conference Series in Mathematics 38 (Providence, RI: American Mathematical Society), 1978. [9] C. Conley and R.W. Easton. Isolated invariant sets and isolating blocks. Trans. Amer. Math. Soc., 158:35–61, 1971. [10] J. Dydak and J. Segal. Shape Theory. An Introduction. Lecture Notes in Mathematics, 688. Springer, 1978. [11] A. Giraldo and J.M.R. Sanjurjo. Singular continuations of attractors. SIAM J. Appl. Dyn. Syst., 8(2):554–575, 2009. [12] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002. [13] M. Izydorek and M. Styborski. Morse inequalities via Conley index theory. In Topological methods in nonlinear analysis., volume 12 of Lect. Notes Nonlinear Anal., pages 37–60. Juliusz Schauder Cent. Nonlinear Stud., Toruń, 2011. [14] L. Kapitanski and I. Rodnianski. Shape and Morse theory of attractors. Comm. Pure Appl. Math., 53:218–242, 2000. [15] S. Mardešić and J. Segal. Shape Theory. The Inverse System Approach. North-Holland Mathematical Library, 26. North-Holland Publishing Co., 1982. [16] C.K. McCord. On the Hopf index and the Conley index. Trans. Amer. Math. Soc., 313:853–860, 1989. [17] J. Munkres. Elements of Algebraic Topology. Addison-Wesley Publishing Company, Inc., 1984. [18] E. Outerelo and J.M. Ruiz. Mapping degree theory, volume 108. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2009. [19] M.R. Razvan and M. Fotouhi. On the Poincaré index of isolated invariant sets. Sci. Iran., 15(6):574–577, 2008. [20] J.W. Robbin and D. Salamon. Dynamical systems, shape theory and the Conley index. in: Charles Conley Memorial Volume, Ergodic Theory Dynam. Systems, 8*:375–393, 1988. [21] D. Salamon. Connected simple systems and the Conley index of isolated invariant sets. Trans. Amer. Math. Soc., 291:1–41, 1985. [22] J.J. Sánchez-Gabites. Aplicaciones de topología geométrica y algebraica al estudio de flujos continuos en variedades. PhD thesis, Universidad Complutense de Madrid, 2009. [23] J.M.R. Sanjurjo. Morse equations and unstable manifolds of isolated invariant sets. Nonlinearity, 16(4):1435–1448, 2003. [24] J.M.R. Sanjurjo. Global topological properties of the Hopf bifurcation. J. Differential Equations, 243:238–255, 2007. [25] E. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966. [26] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, Berlin, 1982. [27] R. Srzednicki. On rest points of dynamical systems. Fund. Math., 126:69–81, 1985. [28] T. Ważewski. Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaries. Ann. Soc. Polon. Math., 20:279–313, 1947.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rodriguezsanjurjo_shape.pdf
Size:
176.95 KB
Format:
Adobe Portable Document Format

Collections