Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Existence of weak solutions to a system of nonlinear partial differential equations modelling ice streams

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorMuñoz Montalvo, Ana Isabel
dc.contributor.authorSchiavi, Emanuele
dc.date.accessioned2023-06-20T09:34:18Z
dc.date.available2023-06-20T09:34:18Z
dc.date.issued2007-02
dc.description.abstractThis paper deals with the mathematical analysis of a nonlinear system of three differential equations of mixed type. It describes the generation of fast ice streams in ice sheets flowing along soft and deformable beds. The system involves a nonlinear parabolic PDE with a multivalued. term in order to deal properly with a free boundary which is naturally associated to the problem of determining the basal water flux in a drainage system. The other two equations in the system are an ODE with a nonlocal (integral) term for the ice thickness, which accounts for mass conservation and a first order PDE describing the ice velocity of the system. We first consider an iterative decoupling procedure to the system equations to obtain the existence and uniqueness of solutions for the uncoupled problems. Then we prove the convergence of the iterative decoupling scheme to a bounded weak solution for the original system.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.sponsorshipUniversity Rey Juan Carlos of Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15268
dc.identifier.doi10.1016/j.nonrwa.2005.07.003
dc.identifier.issn1468-1218
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S1468121805001185
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49933
dc.issue.number1
dc.journal.titleNonlinear Analysis: Real World Applications
dc.language.isoeng
dc.page.final287
dc.page.initial267
dc.publisherPergamon-Elsevier Science Ltd.
dc.relation.projectID2004-07590-C03-01
dc.relation.projectIDGDV-2004-03
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.keywordsurges
dc.subject.keywordice sheet models
dc.subject.keywordnonlinear partial differential equations system of mixed type
dc.subject.keywordfree boundaries
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExistence of weak solutions to a system of nonlinear partial differential equations modelling ice streams
dc.typejournal article
dc.volume.number8
dcterms.referencesH.W. Alt, S. Luckhaus, Quasilinear elliptic–parabolic differential equations, Math. Z. 183 (1993) 311–341. P. Benilan, Equations d'evolution dans un espace de Banach quelconque et applications, Thése, Orsay, 1972. P. Benilan, Evolution equations and accretive operators, Lecture Notes, University of Kentucky, 1972. P. Benilan, P. Wittbould, On mild and weak solutions of elliptic–parabolic problems, Adv. Differential Equations 1 (1996) 1053–1073. H. Brezis, Analyse Fonctionelle, Mason, Paris, 1983. N. Calvo, J. Durany, A.I. Muñoz, E. Schiavi, C. Vázquez, A coupled multivalued model for ice streams and its numerical simulations. IMA J. Appl. Math. 1–30 (2005), Advanced Access Published on May 17, 2005. J.I. Díaz, E. Schiavi, On a degenerate parabolic/hyperbolic system in glaciology giving rise to a free boundary, Nonlinear Anal. 38 (1999) 787–814. A.C. Fowler, Sliding with cavity formation, J. Glaciol. 33 (1987) 255–267. A.C. Fowler, Ice sheet surging and ice stream formation, Ann. Glaciol. 23 (1995) 68–73. A.C. Fowler, C. Johnson, Hydraulic runaway: a mechanism for thermally regulated surges of ice sheets, J. Glaciol. 41 (1995) 554–561. A.C. Fowler, E. Schiavi, A theory of ice sheet surges, J. Glaciol. 44 (146) (1998) 104–118. C. Johnson, The mathematical and numerical modelling of antartic ice streams, Ph.D. Thesis, University of Oxford, 1996. L.A. Lliboutry, Traité de Glaciologie, 1, Mason, Paris, 1964. A.I. Muñoz, Modelado, análisis y resolución numérica de un problema de obstáculo en glaciología, Ph.D. Thesis, Universidad Rey Juan Carlos, 2003. A.I. Muñoz, E. Schiavi, U. Kindelán, Non linear phenomena in glaciology: ice-surging and streaming, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A: Matemáticas. Racsam, vol. 95, Clave A, 2002. A.I. Muñoz, J.I. Tello, Uniqueness and collapse of solution for a mathematical model with nonlocal terms arising in glaciology, Math. Models Meth. Appl. Sci. 15 (4) (2005) 623–642. W.R. Peltier, S. Marshall, Coupled energy-balance/ice-sheet model simulations of the glacial cycle: a possible connection between terminations and terrigemous dust, J. Geophys. Res. 100 (1995) 14269–14289. R.L. Pfeffer, Dynamics of Climate, vol. 137, Pergamon Press, New York, 1960. J. Simon, Compacts sets in the space Lp (0,t;B) , Ann. Mat. Pura. Appl. 4 (CXLVI) (1987) 65–96. I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monograph and Surveys in Pure and Applied Mathematics, vol. 32, 1987. J.L. Lions, Quelques méthodes de resolution des problémes aux limites non linéaires, Dunod, Paris, 1969.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
32.pdf
Size:
419.97 KB
Format:
Adobe Portable Document Format

Collections