Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Coinductive Characterisations Reveal Nice Relations Between Preorders and Equivalences

dc.contributor.authorFrutos Escrig, David De
dc.contributor.authorGregorio Rodríguez, Carlos
dc.contributor.authorPalomino Tarjuelo, Miguel
dc.date.accessioned2023-06-20T10:34:07Z
dc.date.available2023-06-20T10:34:07Z
dc.date.issued2008-04
dc.descriptionProceedings of the First International Conference on Foundations of Informatics, Computing and Software (FICS 2008)
dc.description.abstractThere are two ways to define a semantics for process algebras: either directly by means of an equivalence relation or by means of a preorder whose kernel is the desired equivalence. We are interested in the relationship between these two presentations. Using our characterisation of the behaviour preorders by means of simulations up-to we were able to generate the canonical preorders corresponding to each behaviour equivalence. The axiomatizations of these preorders can be obtained by adding to the axioms of the equivalence that of the appropriate simulation. Aceto, Fokkink and Ingólfsdóttir have presented an algorithm that goes in the opposite direction, constructing an axiomatization of the induced equivalence from that of a given preorder. Following a different path we were able to get a correct proof and an enhanced algorithm. In this paper we present an shorter and simpler proof of this result, based on our coinductive characterisations of the behaviour preorders, and in particular in the existence of the canonical preorders. More important, we also present further generalisations of the result, since our coinductive characterisations are not only valid for the semantics coarser than the ready simulation. By means of these new proofs and results we hope to contribute to a better knowledge of the semantics of processes and to better understand the tight relations between preorders and equivalences that define them.en
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMadrid Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20748
dc.identifier.citationFrutos Escrig, D., Gregorio Rodríguez, C. & Palomino Tarjuelo, M. «Coinductive Characterisations Reveal Nice Relations Between Preorders and Equivalences». Electronic Notes in Theoretical Computer Science, vol. 212, abril de 2008, pp. 149-62. DOI.org (Crossref), https://doi.org/10.1016/j.entcs.2008.04.059.
dc.identifier.doi10.1016/j.entcs.2008.04.059
dc.identifier.issn15710661
dc.identifier.officialurlhttps://doi.org/10.1016/j.entcs.2008.04.059
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S1571066108002740
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50567
dc.journal.titleElectronic Notes in Theoretical Computer Science
dc.language.isoeng
dc.page.final162
dc.page.initial149
dc.publisherElsevier
dc.relation.projectIDDESAFIOS TIN2006-15660-C02-02
dc.relation.projectIDPROMESAS-CAM S-0505/TIC/0407
dc.relation.projectIDWEST TIN2006-15578-C02
dc.rights.accessRightsrestricted access
dc.subject.cdu004
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleCoinductive Characterisations Reveal Nice Relations Between Preorders and Equivalencesen
dc.typejournal article
dc.volume.number212
dspace.entity.typePublication
relation.isAuthorOfPublicationfc861853-ad02-4152-b8b0-e0a8df6080dc
relation.isAuthorOfPublication05a01c46-aac8-42b2-a6bc-4b95860cf5bf
relation.isAuthorOfPublication52909b00-b705-4307-84db-d3211eedef69
relation.isAuthorOfPublication.latestForDiscovery05a01c46-aac8-42b2-a6bc-4b95860cf5bf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Frutos25elsevier.pdf
Size:
309.76 KB
Format:
Adobe Portable Document Format

Collections