Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Heegaard splittings of prime 3-manifolds are not unique

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.contributor.authorBirman, Joan S.
dc.date.accessioned2023-06-21T02:03:02Z
dc.date.available2023-06-21T02:03:02Z
dc.date.issued1976
dc.description.abstractThe authors construct an infinite family of prime homology 3-spheres of Heegaard genus 2, satisfying the following two non-uniqueness properties: (1) Each of the manifolds can be structured as the 2-fold cyclic branched cover over each of two inequivalent knots, one of which is a torus knot. (2) Each of the manifolds admits at least two equivalence classes of genus 2 Heegaard splittings. All of the manifolds are Seifert fiber spaces, the properties of which are used to prove (1). The non-uniqueness of Heegaard splittings is based on the work of the first author and H. M. Hilden [Trans. Amer. Math. Soc. 213 (1975), 315–352], who proved that for Heegaard genus 2 splittings of the 2-fold branched cyclic cover of the knot K, the equivalence class of the Heegaard splitting determines uniquely the knot type K. The authors then show that if Σp,q is the 2-fold cyclic branched cover of the torus knot (p,q), then Σp,q is also the 2-fold cyclic branched cover of a knot different from (p,q), and that Σp,q admits a Heegaard splitting of genus 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSF
dc.description.sponsorshipAlfred P. Sloan Foundation.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17268
dc.identifier.issn0026-2285
dc.identifier.officialurlhttp://projecteuclid.org/euclid.mmj/1029001657
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64715
dc.issue.number2
dc.journal.titleMichigan Mathematical Journal
dc.language.isoeng
dc.page.final103
dc.page.initial97
dc.publisherMichigan Mathematical Journal
dc.relation.projectID38479
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordTopology of general 3-manifolds
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleHeegaard splittings of prime 3-manifolds are not unique
dc.typejournal article
dc.volume.number23
dcterms.referencesJ. S. Birman, On the equivalence of Heegaard splittings of closed, orientable 3-manifolds. In Knots, groups, and 3-manifolds (L. P. Neuwirth,Editor).Princeton Univ. Press, Annals of Math. Studies No. 84 (1975), 137-164. J. S. Birman and H. M. Hilden, The homeomorphism problem for S3. Bull.Amer. Math. Soco 79 (1973), 1006-1010. J. S. Birman and H. M. Hilden, Heegaard splittings 01 branched coverings 01 S3. Trans. Amer. Math. Soc. 213 (1975), 315-352. R. Engmann, Nicht-homoomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhangenden Summe zweier Linsenraume. Abh. Math. Sem. Univ. Hamburg 35 (1970), 33-38. R. H. Fox, A quick trip through knot theory. In Topology of 3-manifolds and related topies (Prac. The Univ. of Georgia Institute, 1961), pp. 120-167. (M.K.Fort, Jr., Editor) Prentice-Hall, Englewood Cliffs, N.J., 1962. R. E. Goodrick, Numerieal invariantsof of knots. Illinois J. Math. 14 (1970), 414-418. J. M. Montesinos, Sobre la conjeetura de Poinearé y los reeubridores ramificados sobre un nodo. Tesis, Facultad de Ciencias, Universidad Complutense de Madrid, 1972. J. M. Montesinos, Variedades de Seifert que son recubridores ciclicos ramificados de dos hojas. Bol. Soc. Mat. Mexicana (2) 18 (1973), 1-32. L. Neuwirth, The algebraic determination of the genus of knots. Amer. J. Math. 82 (1960), 791-798. K. Reidemeister, Zur dreidimensionalen Topologie. Abh. Math. Serna Univ. Hamburg 9 (1933), 189-194. H. Schubert, Über eine numerisehe Knoteninvariante. Math., Z. 61 (1954), 245-288. H. Seifert, Topologie dreidimensionaler gelaserter Raume. Acta Math. 60 (1933), 147-238. H. Seifert, Über das Geschlecht von Knoten. Math. Ann. 110 (1934), 571-592. J. Singer, Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer. Math. Soc. 35 (1933), 88-111. O. Ja. Viro, Linkings, 2-sheeted branched coverings, and braids. Mat. Sb. (N.S.) 87 (129) (1972), 216-228. English translation: Math. USSR-Sb. 16 (1972), 223-236. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II. Invent. Math. 4 (1967), 87-117. F. Waldhausen, Heegaard-Zerlegungen der 3-Sphare. Topology 7 (1968), 195-203. F. Waldhausen , Über lnvolutionen der 3-Sphiire. Topology 8 (1969), 81-91.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos26.pdf
Size:
599.68 KB
Format:
Adobe Portable Document Format

Collections