Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Advantages of unfair quantum ground-state sampling

dc.contributor.authorZhang, Brian Hu
dc.contributor.authorWagenbreth, Gene
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorHens, Itay
dc.date.accessioned2023-06-17T21:57:16Z
dc.date.available2023-06-17T21:57:16Z
dc.date.issued2017-04-21
dc.description© 2017 Macmillan Publishers Limited. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. Computation for the work described here was also supported by the University of Southern California’s Center for High-Performance Computing (http://hpcc.usc.edu).
dc.description.abstractThe debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipOffice of Science of the U.S. Department of Energy
dc.description.sponsorshipUniversity of Southern California’s Center for High-Performance Computing
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43063
dc.identifier.doi10.1038/s41598-017-01096-6
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/s41598-017-01096-6
dc.identifier.relatedurlhttps://www.nature.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17842
dc.issue.number4
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature publishing group
dc.relation.projectIDDEAC05-00OR22725
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu53
dc.subject.keywordIsing spin-glass
dc.subject.keywordModel
dc.subject.ucmFísica-Modelos matemáticos
dc.titleAdvantages of unfair quantum ground-state sampling
dc.typejournal article
dc.volume.number95
dspace.entity.typePublication
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery061118c0-eadf-4ee3-8897-2c9b65a6df66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MartínMayorV Libre 46+CC.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format

Collections