Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison

dc.contributor.authorPellarin, Thierry
dc.contributor.authorRomán Cascón, Carlos
dc.contributor.authorBaron, Christian
dc.contributor.authorBindlish, Rajat
dc.contributor.authorBrocca, Luca
dc.contributor.authorCamberlin, Pierre
dc.contributor.authorFernández-Prieto, Diego
dc.contributor.authorKerr, Yann H.
dc.contributor.authorMassari, Christian
dc.contributor.authorPanthou, Geremy
dc.contributor.authorPerrimond, Benoit
dc.contributor.authorPhilippon, Nathalie
dc.contributor.authorQuantin, Guillaume
dc.date.accessioned2023-06-17T09:08:24Z
dc.date.available2023-06-17T09:08:24Z
dc.date.issued2020-02-03
dc.description.abstractNear real-time precipitation is essential to many applications. In Africa, the lack of dense rain-gauge networks and ground weather radars makes the use of satellite precipitation products unavoidable. Despite major progresses in estimating precipitation rate from remote sensing measurements over the past decades, satellite precipitation products still suffer from quantitative uncertainties and biases compared to ground data. Consequently, almost all precipitation products are provided in two modes: a real-time mode (also called early-run or raw product) and a corrected mode (also called final-run, adjusted or post-processed product) in which ground precipitation measurements are integrated in algorithms to correct for bias, generally at a monthly timescale. This paper describes a new methodology to provide a near-real-time precipitation product based on satellite precipitation and soil moisture measurements. Recent studies have shown that soil moisture intrinsically contains information on past precipitation and can be used to correct precipitation uncertainties. The PrISM (Precipitation inferred from Soil Moisture) methodology is presented and its performance is assessed for five in situ rainfall measurement networks located in Africa in semi-arid to wet areas: Niger, Benin, Burkina Faso, Central Africa, and East Africa. Results show that the use of SMOS (Soil Moisture and Ocean Salinity) satellite soil moisture measurements in the PrISM algorithm most often improves the real-time satellite precipitation products, and provides results comparable to existing adjusted products, such as TRMM (Tropical Rainfall Measuring Mission), GPCC (Global Precipitation Climatology Centre) and IMERG (Integrated Multi-satellitE Retrievals for GPM), which are available a few weeks or months after their detection.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipESA
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66359
dc.identifier.doi10.3390/rs12030481
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs12030481
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8257
dc.issue.number3
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial481
dc.publisherMDPI
dc.relation.projectIDESA/AO/1-7875/14/I-NC (4000114738/15/I-SBO)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordprecipitation
dc.subject.keywordsoil moisture
dc.subject.keywordAfrica
dc.subject.keywordsatellite rainfall products
dc.subject.keywordcomparison
dc.subject.ucmFísica atmosférica
dc.subject.ucmMeteorología (Física)
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleThe Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-12-00481-v2.pdf
Size:
8.77 MB
Format:
Adobe Portable Document Format

Collections