Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Prediction of Rainfall in Australia Using Machine Learning

dc.contributor.authorSarasa Cabezuelo, Antonio
dc.date.accessioned2023-06-22T11:05:23Z
dc.date.available2023-06-22T11:05:23Z
dc.date.issued2022-03-24
dc.description.abstractMeteorological phenomena is an area in which a large amount of data is generated and where it is more difficult to make predictions about events that will occur due to the high number of variables on which they depend. In general, for this, probabilistic models are used that offer predictions with a margin of error, so that in many cases they are not very good. Due to the aforementioned conditions, the use of machine learning algorithms can serve to improve predictions. This article describes an exploratory study of the use of machine learning to make predictions about the phenomenon of rain. To do this, a set of data was taken as an example that describes the measurements gathered on rainfall in the main cities of Australia in the last 10 years, and some of the main machine learning algorithms were applied (knn, decision tree, random forest, and neural networks). The results show that the best model is based on neural networks.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74854
dc.identifier.doi10.3390/info13040163
dc.identifier.issn2078-2489
dc.identifier.officialurlhttps://doi.org/10.3390/info13040163
dc.identifier.relatedurlhttps://www.mdpi.com/2078-2489/13/4/163/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72092
dc.issue.number4
dc.journal.titleInformation
dc.language.isoeng
dc.page.initial163
dc.publisherMPDI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordmachine learning
dc.subject.keywordrain forecast
dc.subject.keywordmeteorological phenomena
dc.subject.keywordknn
dc.subject.keyworddecision tree
dc.subject.keywordrandom forest
dc.subject.keywordneural networks
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística
dc.subject.ucmMedio ambiente natural
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209 Estadística
dc.titlePrediction of Rainfall in Australia Using Machine Learning
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication768e9865-e7a1-4ff7-8765-24f475180751
relation.isAuthorOfPublication.latestForDiscovery768e9865-e7a1-4ff7-8765-24f475180751

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
information-13-00163-v2.pdf
Size:
687.64 KB
Format:
Adobe Portable Document Format

Collections