Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Data-driven scientific research based on public statistics: a bibliometric perspective

dc.contributor.authorVelasco-López, José Eusebio
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorCobo, Manuel J.
dc.contributor.authorFernández-Avilés, Gema
dc.date.accessioned2025-01-14T10:18:24Z
dc.date.available2025-01-14T10:18:24Z
dc.date.issued2023
dc.description.abstractOfficial statistics provide information on different areas of citizens’ lives and are widely used in scientific research as a source of data due to their open data nature and quality assurance. In this context, a bibliometric analysis is carried out using all Scopus publications from 1960 to 2020 that use official statistics as data sources. Thus, 10,777 publications are analyzed using the SciMAT bibliometric analysis software, providing a complete conceptual analysis of the main research topics in the literature through the quantification of the main bibliometric performance indicators, identifying the most important authors, organizations, countries, sources, and intellectual structures corresponding to the main fields of research and bringing classification by subject area as an innovation to the methodology.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSpanish State Research Agency
dc.description.sponsorshipUniversity of Castilla-La Mancha, Faculty of Law and Social Science
dc.description.statuspub
dc.identifier.citationVelasco-López, Jorge-Eusebio; Carrasco, Ramón-Alberto; Cobo, Manuel J.; Fernández-Avilés, Gema (2023). “Data driven scientific research based on public statistics: a bibliometric perspective”. Profesional de la información, v. 32, n. 3, e320314. https://doi.org/10.3145/epi.2023.may.14
dc.identifier.doi10.3145/epi.2023.may.14
dc.identifier.officialurlhttps://doi.org/10.3145/epi.2023.may.14
dc.identifier.relatedurlhttps://revista.profesionaldelainformacion.com/index.php/EPI/article/view/87085
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114191
dc.issue.number3
dc.journal.titleProfesional de la información
dc.language.isoeng
dc.publisherEdiciones Profesionales de la Información
dc.relation.projectIDPID2019-105381GA-I00/AEI/10.13039/501100011033
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu024.5:519.23
dc.subject.cdu001.8
dc.subject.keywordOfficial statistics
dc.subject.keywordCo-word analysis
dc.subject.keywordStrategic diagram
dc.subject.keywordScience mapping analysis
dc.subject.keywordBibliometric analysis
dc.subject.keywordSciMAT
dc.subject.ucmEstadística aplicada
dc.subject.ucmBibliometría
dc.subject.unesco1209 Estadística
dc.subject.unesco1207.01 Análisis de Actividades
dc.titleData-driven scientific research based on public statistics: a bibliometric perspective
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number32
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-22-2023-EPI-ugr.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format

Collections