Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions

dc.contributor.authorMelle Hernández, Sonia
dc.contributor.authorCalderón, Oscar Gómez
dc.contributor.authorEgatz-Gómez, Ana
dc.contributor.authorCabrera Granado, Eduardo
dc.contributor.authorCarreño Sánchez, Fernando
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.date.accessioned2023-06-18T05:41:43Z
dc.date.available2023-06-18T05:41:43Z
dc.date.issued2015-10-26
dc.description.abstractWe experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40653
dc.identifier.doi10.1364/AO.54.009143
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.54.009143
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23068
dc.issue.number31
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final9151
dc.page.initial9143
dc.publisherThe Optical Society Of America
dc.relation.projectIDFIS2013-41709-P
dc.relation.projectIDGR/14-910133
dc.rights.accessRightsrestricted access
dc.subject.cdu535.57
dc.subject.keywordThermal lensing
dc.subject.keywordNonlinear optics
dc.subject.keywordNonlinear optical materials
dc.subject.keywordThermo-optical materials.
dc.subject.ucmFísica de materiales
dc.subject.ucmÓptica no líneal
dc.subject.unesco2209.13 Óptica no lineal
dc.titleThermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions
dc.typejournal article
dc.volume.number54
dcterms.references1. I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Adv. 4, 40152–40160 (2014). 2. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008). S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4, 217–224 (2009). 4. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010). 5. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009). 6. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010). 7. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013). 8. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95, 191911 (2009). 9. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009). 10. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011). 11. J. Li, Y. Zhang, H. Li, C. Yao, and P. Yuan, “Observation of tunable superluminal propagation in the single-layer graphene oxide solution,” Opt. Commun. 295, 226–229 (2013). 12. X.-L. Zhang, Z.-B. Liu, X.-C. Li, Q. Ma, X.-D. Chen, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21, 7511–7520 (2013). 13. S. Melle, O. G. Calderón, A. Egatz-Gómez, E. Cabrera-Granado, F. Carreño, M. A. Antón, and H. J. Salavagione, “Phase shift of amplitude-modulated optical signals in graphene oxide water dispersions due to thermal lens focal length oscillation,” J. Opt. Soc. Am. B 31, 1018–1025 (2014). 14. R. C. C. Leite, S. P. P. Porto, and T. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100–101 (1967). 15. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). 16. D. Rojas, R. J. Silva, J. D. Spear, and R. E. Russo, “Dual-beam optical fiber thermal lens spectroscopy,” Anal. Chem. 63, 1927–1932 (1991). 17. S. E. Bialkowski, Photothermal Spectroscopy Methods For Chemical Analysis (Wiley, 1996). 18. M. Franko and C. D. Tran, “Thermal lens spectroscopy,” in Encyclopedia of Analytical Chemistry (Wiley, 2010). 19. C. Estupiñán-López, C. T. Dominguez, and R. de Araujo, “Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement,” Opt. Express 21, 18592–18601 (2013). 20. M. Liu and M. Franko, “Progress in thermal lens spectrometry and its applications in microscale analytical devices,” Crit. Rev. Anal. Chem. 44, 328–353 (2014). 21. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011). 22. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). 23. J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 225–231 (1974). 24. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973). 25. S. E. Bialkowski and A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997). 26. L. C. Malacarne, N. G. C. Astrath, and L. S. Herculano, “Laser- induced wavefront distortion in optical materials: a general model,” J. Opt. Soc. Am. B 29, 3355–3359 (2012). 27. D. E. Gray, ed. American Institute of Physics Handbook (McGraw-Hill, 1957). 28. A. E. Siegman, Lasers (Mill Valley, 1986). 29. A. Sennaroglu, “Effect of thermal lensing on the mode matching between pump and laser beams in Cr4+: forsterite lasers: a numerical study,” J. Phys. D 33, 1478–1483 (2000). 30. Y. Maeda, “Mechanism of the negative nonlinear absorption effect in a five-level system of the Er3+ ion,” J. Appl. Phys. 83, 1187–1194 (1998). 31. Y. Maeda, “All-optical inverter operating over a temperature range of 15–1400  K in erbium-doped lutetium aluminum garnet,” Appl. Phys. Lett. 72, 395–397 (1998). 32. Y. Maeda, “All-optical inverter operating at 1.53  μm in erbium yttrium aluminum garnets,” Appl. Phys. Lett. 74, 1651–1653 (1999). 33. Y. Maeda, A. Konishi, H. Hashima, and H. Wakabayashi, “Optical bistability and negative nonlinear absorption effect at 1.5  μm in highly Er3+-doped glasses,” J. Ceram. Soc. Jpn. 108, 535–540 (2000). 34. Y. Maeda, “Optical bistability derived from the negative nonlinear absorption effect in erbium doped materials,” Mater. Sci. Eng. 81, 174–175 (2001). 35. Y. Hong, C. Masoller, M. S. Torre, S. Priyadarshi, A. A. Qader, P. S. Spencer, and K. A. Shore, “Thermal effects and dynamical hysteresis in the turn-on and turn-off of vertical-cavity surface-emitting lasers,” Opt. Lett. 35, 3688–3690 (2010). 36. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011). 37. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication6080119e-4199-4330-a163-3f58a24a1160
relation.isAuthorOfPublicationf63bf5d8-27d6-4a43-876d-a41e00c683bc
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication.latestForDiscovery6080119e-4199-4330-a163-3f58a24a1160

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thermally-OSA-2015.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format

Collections