Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Compact Riemann Surfaces With Dihedral Groups Of Automorphisms

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorBujalance, E.
dc.contributor.authorCirre, F.J.
dc.contributor.authorGromadzki, G.
dc.date.accessioned2023-06-20T16:51:27Z
dc.date.available2023-06-20T16:51:27Z
dc.date.issued2003
dc.description.abstractWe study compact Riemann surfaces of genus g 2 having a dihedral group of automorphisms. We find necessary and sufficient conditions on the signature of a Fuchsian group for it to admit a surface kernel epimorphism onto the dihedral group DN. The question of extendability of the action of DN is considered. We also give an explicit parametrization of the moduli space of Riemann surfaces with maximal dihedral symmetry, showing that it is a one-dimensional complex manifold. Defining equations of all such surfaces and the formulae of their automorphisms are calculated. The locus of this moduli space consisting of those surfaces admitting some real structure is determined.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT PB98-0017;DGICYT PB98-0756.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15255
dc.identifier.doi10.1017/S030500410200662X
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S030500410200662X
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57246
dc.issue.number3
dc.journal.titleMathematical Proceedings
dc.language.isoeng
dc.page.final477
dc.page.initial465
dc.publisherCambridge Univ
dc.rights.accessRightsrestricted access
dc.subject.cdu517.547, 515.172
dc.subject.keywordRiemann surfaces
dc.subject.keywordautomorphism groups
dc.subject.keywordmoduli space
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn Compact Riemann Surfaces With Dihedral Groups Of Automorphisms
dc.typejournal article
dc.volume.number134
dcterms.referencesG. A. Adel. Some results on groups related to compact Riemann surfaces. PhD Thesis. University of Minnesota (1983). T. Breuer. Characters and automorphisms groups of compact Riemann surfaces. London Math. Soc. Lecture Notes Series, 280 (Cambridge University Press, 2000). E. Bujalance, F. J. Cirre and M. D. E. Conder. On extendability of group actions on compact Riemann surfaces. Trans. Amer. Math. Soc. 355 (2003), 1537–1557. E. Bujalance, F. J. Cirre, J. M. Gamboa and G. Gromadzki. Symmetry types of hyperelliptic Riemann surfaces. Memoires de la Soci´et´e Math´ematique de France, No 86 (2001). E. Bujalance and M. D. E. Conder. On cyclic groups of automorphisms of Riemann surfaces. J. London Math. Soc. (2) 59 (1999), 573–584. E. Bujalance, J. M. Gamboa and G. Gromadzki. The full automorphism groups of hyperelliptic Riemann surfaces Manuscripta Math. 79 (1993) 267–282. F. J. Cirre. On the birational classification of hyperelliptic real algebraic curves in terms of their equations. Submitted for publication. G. Gonz´alez-D´ıez andW. J. Harvey. Moduli of Riemann surfaces with symmetry. In Discrete groups and geometry(Birmingham, 1991), 75–93, London Math. Soc. Lecture Notes Series, 173 (Cambridge University Press, 1992). G. Gonz´alez-D´ıez and R. Hidalgo. Conformal versus topological conjugacy of automorphisms of compact Riemann surfaces Bull. London Math. Soc. 29 (1997), 280–284. L. Greenberg. Maximal Fuchsian groups. Bull. Amer. Math. Soc. 69 (1963), 569–573. W. J. Harvey. Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford 17 (1966), 86–97. M. Izquierdo. On Klein surfaces and dihedral groups. Math. Scand. 76 (1995), no. 2, 221–232. C. Maclachlan. Abelian groups of automorphisms of compact Riemann surfaces Proc. London Math. Soc. (3) 15 (1965), 699–712. C. Maclachlan. Groups of automorphisms of compact Riemann surfaces. PhD Thesis. University of Birmingham (1966). C. Maclachlan. Smooth coverings of hyperelliptic surfaces. Quart. J. Math. Oxford (2) (1971), 22, 117–123. S. Nag. The complex analytic theory of Teichm¨ uller spaces(Wiley, 1988). K. Nakagawa. On the orders of automorphisms of a closed Riemann surface. Pacific J. Math. (2) 115 (1984), 435–443. D. Singerman. Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6 (1972), 29–38. D. Singerman. Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 17–32.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11.pdf
Size:
182.1 KB
Format:
Adobe Portable Document Format

Collections