Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Limit laws for disparities of spacings

dc.contributor.authorMorales González, Domingo
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorPardo Llorente, María del Carmen
dc.contributor.authorVadja, Igor
dc.date.accessioned2023-06-20T09:45:26Z
dc.date.available2023-06-20T09:45:26Z
dc.date.issued2003-06
dc.description.abstractDisparities of spacings mean the phi-disparities D-phi((q) over bar (n), p(n)) of discrete hypothetical and empirical distributions g and p(n) defined by m-spacings on i.i.d. samples of size n where phi: (0, infinity) \--> HR is twice continuously differentiable in a neighborhood of 1 and strictly convex at 1. It is shown that a slight modification of the disparity statistics introduced for testing the goodness-of-fit in 1986 by Hall are the phi-disparity statistics D-n(phi) = nD(phi) ((q) over bar (n), p(n)). These modified statistics can be ordered for 1 less than or equal to m less than or equal to n as to their sensitivity to alternatives. The limit laws governing for n --> infinity the distributions of the statistics under local alternatives are shown to be unchanged by the modification, which allows to construct the asymptotically a-level goodness-of-fit tests based on D-n(phi). In spite of that the limit laws depend only on the local properties of phi in a neighborhood of 1, we show by a simulation that for small and medium sample sizes n the true test sizes and powers significantly depend on phi and also on the alternatives, so that an adaptation of phi to concrete situations can improve performance of the phi-disparity test. Relations of D-n(phi) to some other m-spacing statistics known from the literature are discussed as well.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17810
dc.identifier.doi10.1080/1048525031000120206
dc.identifier.issn1048-5252
dc.identifier.officialurlhttp://www.tandfonline.com/doi/abs/10.1080/1048525031000120206
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50309
dc.issue.number3
dc.journal.titleJournal of Nonparametric Statistics
dc.page.final342
dc.page.initial325
dc.publisherTailor and Francis
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.15
dc.subject.keywordspacings
dc.subject.keyworddisparities of spacings under a hypothesis
dc.subject.keywordlimit laws for disparities of m-spacings
dc.subject.keywordgoodness-of-fit tests based on disparities of spacings
dc.subject.keywordhigh-order spacings
dc.subject.keywordasymptotic distributions
dc.subject.keywordsample spacings
dc.subject.keywordstatistics
dc.subject.keywordtheorems
dc.subject.keywordtests
dc.subject.keyworddivergence
dc.subject.keywordgoodness
dc.subject.keywordsums
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleLimit laws for disparities of spacings
dc.typejournal article
dc.volume.number15
dcterms.referencesAli, S. M. and Silvey, S. D. (1966). A general class of coefficient of divergence of one distribution from another, Journal of Royal Statistical Society, Series B, 286, 131–142. MR0196777 (33 #4963) Csiszár, I. (1963). Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizatät von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences, Ser A, 8, 85–108. MR0164374 (29 #1671) Beirlant, J., Devroye, L., Gyorfi, L. and Vajda, I. (2001). Large deviations of divergence measures on partitions. Journal of Statistical Planning and Inference, 93, 1–16. MR1822385 (2002b:62051) Dudewicz, E. J. and van der Meulen, E. C. (1981). Entropy-based tests of uniformity. Journal of the American Statistical Association, 76, 967–974. MR0650913 (83e:62058) Ekström, M. (1999). Strong limit theorems for sums of logarithms of high order spacings. Statistics, 33, 153–169. MR1744751 Jammalamadaka, S. R., Zhou, X. and Tiwari, R. C. (1989). Asymptotic efficiencies of spacings tests for goodness-of-fit. Metrika, 36, 355–377. MR1050699 (91j:62054) Guttorp, P. and Lockhart, R. A. (1989). On the asymptotic distributions of high-order spacing statistics. The Canadian Journal of Statistics, 17, 419–426. MR1047308 Györfi, L. and Vajda, I. (2002). Asymptotic distributions for goodness of fit statistics in a sequence of multinomial models. Statistics and Probability Letters, 56, 57–67. MR1881531 (2003a:62032) Hall, P. (1986). On powerful distributional tests based on sample spacings. Journal of Multivariate Analysis, 19, 201–224. Inglot, T., Jurlewicz, T. and Ledwina, T. (1990). Asymptotics for multinomial goodness of fit tests for simple hypothesis. Theory of Probability and Applications, 35, 771–777. Liese, F. and Vajda, I. (1987). Convex Statistical Distances. Teubner Verlag, Leipzig. Lindsay, B. G. (1994). Efficiency versus robutness: The case for minimum Hellinger distance and other methods. Annals of Statistics, 22, 1081–1114. Menéndez, M. L., Morales, D. and Pardo, L. (1997). Maximum entropy principle and statistical inference on condensed ordered data. Statistics and Probability Letters, 34(1), 85–93. Menéndez, M. L., Morales, D., Pardo, L. and Vajda, I. (1998). Two approaches to grouping of data and related disparity statistics. Communications in Statistics - Theory and Methods, 27, 609–633. Morales, D., Pardo, L. and Vajda, I. (1996). Uncertainty of discrete stochastic systems: General theory and statistical inference. IEEE Transactions on System, Man and Cybernetics, 26, 1–17. Morris, C. (1975). Central limit theorems for multinomial sums. Annals of Statistics, 3, 165–188. Quine, M. P. and Robinson, J. (1985). Efficiencies of chi-square and likelihood ratio goodness-of-fit tests. Annals of Statistics, 13, 727–742. Read, R. C. and Cressie, N. A. C. (1988). Goodness-of-fit Statistics for Discrete Multivariate Data. Springer Verlag, New York. Shao, Y. and Hahn, M. G. (1995). Limit theorems for the logarithm of sample spacings. Statistics and Probability Letters, 24, 121–132. Vajda, I. (1989). Theory of Statistical Inference and Information. Kluwer Academic Publishers, Boston. Vajda, I. (2003). Asymptotic laws for stochastic disparity statistics. Tatra Mountains Mathematical Journal, in print.
dspace.entity.typePublication
relation.isAuthorOfPublication4d5cedd9-975b-43fb-bc2e-f55dec36a2bf
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery4d5cedd9-975b-43fb-bc2e-f55dec36a2bf

Download

Collections