Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Positivstellensatz for definable functions on O-minimal structures

dc.contributor.authorAcquistapace, Francesca
dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorBroglia, Fabrizio
dc.date.accessioned2023-06-20T16:49:38Z
dc.date.available2023-06-20T16:49:38Z
dc.date.issued2002
dc.description.abstractIn this note we prove two Positivstellensatze for definable functions of class C-r, 0 less than or equal to r < &INFIN;, in any o-minimal structure S expanding a real closed field R. Namely, we characterize the definable functions that are nonnegative (resp. strictly positive) on basic definable sets of the form F = {f(1) &GE; 0,...,f(k) &GE; 0}.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGNSAGA
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14764
dc.identifier.issn0019-2082
dc.identifier.officialurlhttps://www.projecteuclid.org/euclid.ijm/1258130979
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57152
dc.issue.number3
dc.journal.titleIllinois Journal of Mathematics
dc.language.isoeng
dc.page.final693
dc.page.initial685
dc.publisherUniversity of Illinois
dc.relation.projectIDPB98-0756-C02-01
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordPositivstellensatz
dc.subject.keyworddefinable functions
dc.subject.keywordo-minimal structure
dc.subject.keywordreal closed field
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe Positivstellensatz for definable functions on O-minimal structures
dc.typejournal article
dc.volume.number46
dcterms.references[AAB] F. Acquistapace, C. Andradas, and F. Broglia, The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets, Math. Ann. 316 (2000), 609{616. [BCR] J. Bochnack, M. Coste, and M. F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. [Br] G. W. Brumel, Partially ordered rings and semi-algebraic geometry, London Math. Soc. Lecture Note Series, vol. 37, Cambridge University Press, Cambridge, 1978. [Co] M. Coste, An Introduction to o-minimal geometry. Dpto. di Matematica Univ. di Pisa, 2000. [De] C. Delzell, A constructive, continuous solution to Hilbert's 17th Problem and other results in semialgebraic geometry, PhD. Dissertation, Stanford Univ., 1980. [Dr] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Series, vol. 248, Cambridge Univ. Press, Cambridge, 1998. [DMi] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (2) (1996), 497{540. [Es] J. Escribano, Ph.D. Thesis, Univ. Complutense de Madrid, 2000. [Mo] T. S. Motzkin, The arithmetic-geometric inequality, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967, pp. 205{224. [Pu] M. Putinar, Positive polynomials on compact semialgebraic sets, Indiana Univ. Math. J. 42 (1993), 969{984. [Sche] C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), 1039{1069. [Schm] K. Schm�udgen, The K{moment problem for compact semi{algebraic sets, Math. Ann. 289 (1991), 203{206. [St] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann. 207 (1974), 87{97. [To] J. C. Tougeron, Ideaux de fonctions dierentiables, Ergeb. Math. Grenzgebiete, vol. 71, Springer-Verlag, Berlin, 1972.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
216.46 KB
Format:
Adobe Portable Document Format

Collections