Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Subgroups of even Artin groups of FC-type

dc.contributor.authorAntolín Pichel, Yago
dc.contributor.authorFoniqi, Islam
dc.date.accessioned2023-06-22T11:27:23Z
dc.date.available2023-06-22T11:27:23Z
dc.date.issued2023-05-26
dc.description.abstractWe prove a Tits alternative theorem for subgroups of finitely generated even Artin groups of FC type (EAFC groups), stating that there exists a finite index subgroup such that every subgroup of it is either finitely generated abelian, or maps onto a non-abelian free group. Parabolic subgroups play a key role, and we show that parabolic subgroups of EAFC groups are closed under taking roots.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipSantander-UCM
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78891
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72429
dc.language.isoeng
dc.relation.projectIDCEX2019-000904-S; PID2021-126254NB-I00
dc.relation.projectIDPR44/21-29907
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512.54
dc.subject.keywordEven Artin Groups
dc.subject.keywordFC type
dc.subject.keywordParabolic subgroup
dc.subject.keywordTits alternative
dc.subject.keywordCoherence
dc.subject.ucmGrupos (Matemáticas)
dc.titleSubgroups of even Artin groups of FC-type
dc.typejournal article
dcterms.references1] Yago Antolín and Islam Foniqi. Intersection of parabolic subgroups in even Artin groups of FC-type. Proc. Edinb. Math. Soc. (2), 65(4):938–957, 2022. [2] Yago Antolín and Ashot Minasyan. Tits alternatives for graph products. Journal für die reine und angewandte Mathematik, 2015(704):55–83, 2015. [3] Gilbert Baumslag. A remark on generalized free products. Proc. Amer. Math. Soc., 13:53–54, 1962. [4] Rubén Blasco-García, Conchita Martínez-Pérez, and Luis Paris. Poly-freeness of even artin groups of fc type. Groups, Geometry, and Dynamics, 13(1):309–325, 2018. [5] J. O. Button. Tubular free by cyclic groups and the strongest tits alternative. arXiv math.GR 1510.05842, 2015. [6] Arjeh M. Cohen and David B. Wales. Linearity of Artin groups of finite type. Israel J. Math., 131:101–123, 2002. [7] Marc Culler and John W. Morgan. Group actions on R-trees. Proc. London Math. Soc. (3), 55(3):571–604, 1987. [8] María Cumplido, Volker Gebhardt, Juan González-Meneses, and Bert Wiest. On parabolic subgroups of Artin-Tits groups of spherical type. Adv. Math., 352:572–610, 2019. [9] María Cumplido, Alexandre Martin, and Nicolas Vaskou. Parabolic subgroups of large-type Artin groups. Math. Proc. Cambridge Philos. Soc., 174(2):393–414, 2023. [10] Warren Dicks and M. J. Dunwoody. Groups acting on graphs, volume 17 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1989. [11] Carl Droms. Graph groups, coherence, and three-manifolds. J. Algebra, 106(2):484–489, 1987. [12] Eddy Godelle. Parabolic subgroups of artin groups of type fc. Pacific journal of mathematics, 208(2):243–254, 2003. [13] CM Gordon. Artin groups, 3-manifolds and coherence. Bol. Soc. Mat. Mexicana, 10:193–198, 2004. [14] Thomas Haettel. Virtually cocompactly cubulated Artin-Tits groups. Int. Math. Res. Not. IMRN, (4):2919–2961, 2021. [15] Susan Hermiller and Zoran Šunić. Poly-free constructions for right-angled Artin groups. J. Group Theory, 10(1):117–138, 2007. [16] Susan M. Hermiller and John Meier. Artin groups, rewriting systems and three-manifolds. J. Pure Appl. Algebra, 136(2):141–156, 1999. [17] A. Karrass and D. Solitar. The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc., 150:227–255, 1970. [18] Daan Krammer. Braid groups are linear. Ann. of Math. (2), 155(1):131–156, 2002. [19] Gilbert Levitt. Generalized Baumslag–Solitar groups: rank and finite index subgroups. Annales de l’Institut Fourier, 65(2):725–762, 2015. [20] Alexandre Martin. The tits alternative for two-dimensional artin groups and wise’s power alternative. arXiv math.GR 2210.06369, 2022. [21] Alexandre Martin and Piotr Przytycki. Tits alternative for Artin groups of type FC. J. Group Theory, 23(4):563–573, 2020. [22] Alexandre Martin and Piotr Przytycki. Acylindrical actions for two-dimensional Artin groups of hyperbolic type. Int. Math. Res. Not. IMRN, (17):13099–13127, 2022. [23] Damian Osajda and Piotr Przytycki. Tits alternative for 2-dimensional CAT(0)-dimensional complexes. Forum Math. Pi, 10:Paper No. e25, 19, 2022. [24] Harm Van der Lek. The homotopy type of complex hyperplane complements. PhD thesis, Katholieke Universiteit te Nijmegen, 1983. [25] Daniel T. Wise. The last incoherent Artin group. Proc. Amer. Math. Soc., 141(1):139–149, 2013.
dspace.entity.typePublication
relation.isAuthorOfPublicationbd3bab81-47d2-4551-811a-af8ac40597c5
relation.isAuthorOfPublication.latestForDiscoverybd3bab81-47d2-4551-811a-af8ac40597c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
antolin_subgroups_by.pdf
Size:
391.76 KB
Format:
Adobe Portable Document Format

Collections