Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Means in locally convex spaces and semireflexivity. (Spanish: Medias en espacios localmente convexos y semi-reflexividad).

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorVera Boti, Gabriel
dc.date.accessioned2023-06-21T02:03:35Z
dc.date.available2023-06-21T02:03:35Z
dc.date.issued1973
dc.description.abstractLet S be a semigroup and let E be a locally convex topological vector space over the field of real numbers. Let B(S,E) be the linear space of mappings f:S→E such that f(S) is a bounded set of E . For every s∈S and every f∈B(S,E), s f[f s ] denotes the function from S into E defined by ( s f)(T)=f(s⋅t) for each t∈S [(f s )(t)=f(t⋅s) for each t∈S ]. A subspace X of B(S,E) is left [right] invariant if, for every f∈X and s∈S , s f[f s ] also belongs to X . The space X is invariant if it is both left and right invariant. The authors give the following definition of a mean: a mean μ on a subspace X of B(S,E) , containing the constant functions, is a linear mapping of X into E such that μ(f) belongs to the closed convex hull of f(S) . Moreover. if X is left [right] invariant, μ is left [right] invariant provided μ( s f)=μ(f)[μ(f s )=μ(f)] , for every f∈X and s∈S . If X is invariant and μ is left and right invariant, then μ is invariant. The authors study the problem of the existence of invariant means on certain subspaces of X . For a larger class of semigroups they prove that if E is quasicomplete for the Mackey topology, a necessary and sufficient condition to ensure the existence of a invariant mean on B(S,E) is that E be semi-reflexive.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17849
dc.identifier.issn0010-0757
dc.identifier.officialurlhttp://www.collectanea.ub.edu/index.php/Collectanea/article/view/3416/4096
dc.identifier.relatedurlhttp://www.collectanea.ub.edu/index.php/Collectanea/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64738
dc.issue.number3
dc.journal.titleCollectanea mathematica
dc.language.isospa
dc.page.final295
dc.page.initial267
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordMeans on groups
dc.subject.keywordLocally convex spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleMeans in locally convex spaces and semireflexivity. (Spanish: Medias en espacios localmente convexos y semi-reflexividad).
dc.typejournal article
dc.volume.number24
dcterms.referencesBOMBAl, F.: Medidas invariantes con valores en A-módulos normados. Tesis Doctoral. Memorias del Instituto Jorge-Juan, C. S. I. C., Madrid. DIXMIER, J.: Les moyennes invariantes dans les semigroupes et leurs applications. Act. Sci. Math. Szeged, 12 A, 1950, 213-227. GREENLEAF, F. P. : Invariant means on topological groups. Van Nostrand, New York, 1969. HEWITT, E. AND Ross, K. A.: Abstract Harmonic Analysis, vol I. SprillgerVerlag, Berlin, 1963. HORVÁTH, J.: Topological Vector Spaces and Distributions, volI. Addison-Vesley, Reading, Massachusetts, 1966. KÖTHE, G.: Topological Vector Spaces, 1. Springer-Verlag, Berlin, 1969. NACHBIN, L.: Elements of approximation theory. Van Nostrand, Princeton, 1967. RODRIGUEZ-SALINAS, B.: El problema de la medida. Memorias del Instituto Jorge-Juan, C. S. 1. C., Madrid. SCHAEFER, H.: Topological Vector Spaces. Springer-Verlag, Berlín, 1971. VERA, G.: Limites generalizados en A-módulos. Tesis Doctoral. Aparecerá en las Memorias del Instituto Jorge-Juan, C. S. 1. C., Madrid.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal30.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format

Collections