Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some remarks on Lagrangian and Poisson reduction for field theories

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMarsden, Jerrold E.
dc.date.accessioned2023-06-20T10:38:20Z
dc.date.available2023-06-20T10:38:20Z
dc.date.issued2003-10
dc.description.abstractGiven a Hamiltonian system on a fiber bundle, the Poisson covariant formulation of the Hamilton equations is described. When the fiber bundle is a G-principal bundle and the Hamiltonian density is G-invariant, the reduction of this formulation is studied thus obtaining the analog of the Lie-Poisson reduction for field theories. The relation of this reduction with the Lagrangian reduction and the Lagrangian and Poisson reduction for electromagnetism are also analyzed.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSF
dc.description.sponsorshipMax Planck
dc.description.sponsorshipDGESIC
dc.description.sponsorshipJunta Castilla-Léon
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23323
dc.identifier.doi10.1016/S0393-0440(03)00025-1
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0393044003000251
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50860
dc.issue.number1
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final83
dc.page.initial52
dc.publisherElsevier
dc.relation.projectIDDMS-0204474
dc.relation.projectIDBMF2000-1314
dc.relation.projectIDSA085-01
dc.rights.accessRightsrestricted access
dc.subject.cdu515.14
dc.subject.keywordLagrangian and Poisson reduction
dc.subject.keywordField theories
dc.subject.keywordClassical field theory.
dc.subject.ucmGeometria algebraica
dc.subject.ucmTopología
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1210 Topología
dc.titleSome remarks on Lagrangian and Poisson reduction for field theories
dc.typejournal article
dc.volume.number48
dcterms.referencesE. Binz, J.Sniatycki, H. Fischer, Geometry of classical fields, in: North-Holland Mathematics Studies, vol.154, North-Holland, Amsterdam, 1988. M. Castrillón López, P.L. García Pérez, T.S. Ratiu, Euler–Poincaré reduction on principal bundles, Lett. Math. Phys. 58 (2001) 167–180. M. Castrillón López, J.M.Masqué, The geometry of the bundle of connections, Math. Z. 236 (2001) 797–811. M. Castrillón López, T.S. Ratiu, S. Shkoller, Reduction in principal fiber bundles:covariant Euler–Poincaré equations, Proc. Am. Math. Soc. 128 (2000) 2155–2164. H. Cendra, D.D. Holm, M.J.W. Hoyle, J.E. Marsden, The Maxwell–Vlasov equations in Euler–Poincaré form, J. Math. Phys. 39 (1998) 3138–3157. H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian reduction by stages, in: Memoirs, vol. 152, American Mathematical Society, Providence, RI, 2001. A. Echeverria-Enríquez, M.C. Muñoz-Lecanda, N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys. 41 (2000) 7402–7444. A. Fernández, P.L. García, C. Rodrigo, Lagrangian reduction and constrained variational calculus, in: Proceedings of the IX Fall Workshop on Geometry and Physics, vol. 4, RSME, 2000, pp. 53–64. M. Forger, H. Römer, A Poisson bracket on multisymplectic phase space, Rep. Math. Phys. 48 (2001) 211–218. P.L. García, The Poincaré–Cartan invariant in the calculus of variations,in:Proceedings of the Symposia on Mathematica, vol. XIV, Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973, No. 53 #10037, Academic Press, London, 1974, pp. 219–246. P.L. García, Gauge algebras, curvature and symplectic structure, J. Diff. Geom. 12 (1977) 209–227. G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997. M. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, Momentum Maps and the Hamiltonian Structure of Classical Relativistic Field Theories, 1985. http://www.cds.caltech.edu/∼marsden. H. Goldschmidt, S. Sternberg, The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble) 23 (1973) 203–267. C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations.I. The local case, J. Diff. Geom. 25 (1987) 23–53. D.D. Holm, B.A. Kupershmidt, The analogy between spin glasses and Yang–Mills fluids, J.Math. Phys. 29(1988) 21–30. D.D. Holm, J.E. Marsden, T.S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998) 1–81. I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41 (1998) 49–90. J.E. Marsden, R. Montgomery, P.J. Morrison,W.B. Thompson, Covariant Poisson brackets for classical fields, Ann. Phys. 169 (1986) 29–48. J.E. Marsden, R. Montgomery, T.S. Ratiu, Reduction, symmetry and phases in mechanics, in: Memoirs of the AMS, vol. 436, American Mathematical Society, Providence, RI, 1990. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd ed., 1994, Springer, Berlin, 1999. J.E. Marsden, J. Scheurle, The reduced Euler–Lagrange equations, Fields Inst. Commun. 1 (1993) 139–164. J.E. Marsden, S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves, Math.Proc.Camb. Philos. Soc. 125 (1999) 553–575. J.E. Marsden, A.Weinstein, The Hamiltonian structure of the Maxwell–Vlasov equations, PhysicaD4 (1982) 394–406. J.E. Marsden, A.Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids,Physica D 7 (1983) 305–323. J.E. Marsden, A. Weinstein, Comments on the history, theory, and applications of symplectic reduction, in: N. Landsman, M. Pflaum, M. Schlichenmaier (Eds.), Quantization of Singular Symplectic Quotients, Birkhäuser, Boston, 2001, pp. 1–20. G. Sardanashvily, Generalized Hamiltonian formalism for field theory, World Scientific, River Edge, NJ, 1995. D.J. Saunders, The geometry of jet bundles, in: London Mathematical Society Lecture Notes Series, vol.142,Cambridge University Press, Cambridge, 1989. J. Sniatycki, Regularity of constraints and reduction in the Minkowski space Yang–Mills–Dirac theory, Ann. Inst. H. Poincaré Phys. Théoret. 70 (1999) 277–293.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillón150pdf.pdf
Size:
244.19 KB
Format:
Adobe Portable Document Format

Collections