Steerable spatial phase shifting applied to single-image closed-fringe interferograms

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorEstrada, Julio César
dc.contributor.authorGómez Pedrero, José Antonio
dc.date.accessioned2023-06-20T03:35:28Z
dc.date.available2023-06-20T03:35:28Z
dc.date.issued2009-04-20
dc.description© 2009 Optical Society of America. We thank the Ministerio de Ciencia y Tecnología of Spain for the financial support of this work given by project DPI2005-03891. Also M. Servin and J. C. Estrada acknowledge the financial support of the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT).
dc.description.abstractIt is well known that spatial phase shifting interferometry (SPSI) may be used to demodulate two-dimensional (2D) spatial-carrier-interfrograms. In these crises the application of SPSI is straightforward because the modulating phase is a monotonic increasing function of space. However, this is not true when we apply SPSI to demodulate a single-image interferogram containing closed fringes. This is because using these algorithms, one would obtain a wrongly demodulated monotonic phase all over the 2D space. We present a technique to overcome this drawback and to allow any SPSI algorithm to be used as a single-image fringe pattern demodulator containing closed fringes. We make use of the 2D spatial orientation direction of the fringes to steer (orient) the one-dimensional SPSI algorithm in order to correctly demodulate the nonmonotonic 2D phase all over the interferogram.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología of Spain
dc.description.sponsorshipMexican Consejo Nacional de Ciencia y Tecnología (CONACYT)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22823
dc.identifier.citation1. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983). 2. M. Servín, J. L. Marroquín, and F. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closedfringe interferograms,” J. Opt. Soc. Am. A 18, 689–695 (2001). 3. J. L. Marroquín, M. Rivera, S. Botello, R. Rodríguez-Vera, and M. Servín, “Regularization methods for processing fringepattern images,” Appl. Opt. 38, 788–794 (1999). 4. J. L. Marroquín, R. Rodríguez-Vera, and M. Servín, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–44 (1998). 5. K. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001). 6. J. Villa, I. De la Rosa, G. Miramontes, and J. A. Quiroga, “Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator,” J. Opt. Soc. Am. A 22, 2766–2773 (2005). 7. X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007). 8. R. Onodera, Y. Yamamoto, and Y. Ishii, “Signal processing of interferogram using a two-dimensional discrete Hilbert transform,” in Proceedings of Fringe 2005, Fifth International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (European Space Agency, 2005), pp. 82–89. 9. C. J. Morgan, “Least-squares estimation in phase-measurement interferometry,” Opt. Lett. 7, 368–370 (1982). 10. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). 11. J. A. Gómez Pedrero, J. A. Quiroga, and M. Servín, “Asynchronous phase demodulation algorithm for temporal evaluation of fringe patterns with spatial carrier,” J. Mod. Opt. 51, 97– 109 (2004). 12. M. Servín, J. A. Quiroga, and J. L. Marroquín, “A general ndimensional quadrature transform and its applications to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003). 13. J. Zhong and J. Weng “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004). 14. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007). 15. M. Servín, R. Rodríguez-Vera, and D. Malacara, “Noisy fringe pattern demodulation by an iterative phase locked loop,” Opt. Lasers Eng. 23, 355–365 (1995). 16. B. Strobel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Opt. 35, 2192–2198 (1996). 17. J. A. Gómez-Pedrero, J. A. Quiroga, and M. Servín, “Adaptive asynchronous algorithm for fringe pattern demodulation,” Appl. Opt. 47, 3954–3961 (2008).
dc.identifier.doi10.1364/AO.48.002401
dc.identifier.issn0003-6935
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.48.002401
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43978
dc.issue.number12
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final2409
dc.page.initial2401
dc.publisherThe Optical Society of America
dc.relation.projectIDDPI2005-03891
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordTransform Profilometry
dc.subject.keywordQuadrature Transform
dc.subject.keywordPattern Demodulation
dc.subject.keywordFourier-Transform
dc.subject.keywordAlgorithm
dc.subject.keywordInterferometry
dc.subject.keywordOrientation
dc.subject.keywordCarrier
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSteerable spatial phase shifting applied to single-image closed-fringe interferograms
dc.typejournal article
dc.volume.number48
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA32.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Collections