Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Multidimensional Darboux transformation

dc.contributor.authorGonzález López, Artemio
dc.contributor.authorKamran, Niky
dc.date.accessioned2023-06-20T20:09:56Z
dc.date.available2023-06-20T20:09:56Z
dc.date.issued1998-07
dc.description© Elsevier. One of the authors (A.G.-L.) would like to thank A. Galindo, M. Mañas and M. A. Martín Delgado for helpful conversations.
dc.description.abstractA generalization of the classical one-dimensional Darboux transformation to arbitrary n- dimensional oriented Riemannian manifolds is constructed using an intrinsic formulation based on the properties of twisted Hodge Laplacians. The classical two-dimensional Moutard transformation is also generalized to non-compact oriented Riemannian manifolds of dimension n ≥ 2. New examples of quasi-exactly solvable multidimensional matrix Schrödinger operators on curved manifolds are obtained by applying the above results.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32861
dc.identifier.doi10.1016/S0393-0440(97)00044-2
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0393-0440(97)00044-2
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/9612100
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59724
dc.issue.number3-abr.
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final226
dc.page.initial202
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQuantum-systems
dc.subject.keywordSupersymmetry
dc.subject.keywordDimensions
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThe Multidimensional Darboux transformation
dc.typejournal article
dc.volume.number26
dcterms.references[1] Andrianov, A. A., Borissov, N. V., and Ioffe, M. V., The factorization method and quantum systems with equivalent energy spectra, Phys. Lett. 105A (1984), 19–22. [2] Andrianov, A. A., Borissov, N. V., Eides, M. I., and Ioffe, M. V., Supersymmetric origin of equivalent quantum systems, Phys. Lett. 109A (1985), 143–148. [3] Crum, M. M., Associated Sturm–Liouville equations, Q. J. Math. 6 (1955), 121–127. [4] Darboux, G., Théorie générale des surfaces, vol. II, Gauthier–Villars, Paris, 1888. [5] Deift, P., and Trubowitz, E., Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121– 251. [6] Goursat, E., Le¸cons sur l’ intégration des equations aux dérivées partielles du second ordre, Hermann, Paris, 1896. [7] González-López, A., Kamran, N., and Olver, P.J., New quasi-exactly solvable Hamiltonians in two dimensions, Commun. Math. Phys. 159 (1994), 503–537. [8] González–López, A., Kamran, N., and Olver, P.J., Quasi–exact solvability, Contemp. Math. 160 (1994), 113–140. [9] González-López, A., Kamran, N., and Olver, P.J., Real Lie algebras of differential operators and quasi- exactly solvable potentials, Phil. Trans. London Math. Soc. A354 (1996), 1165–1193. [10] Infeld, L., and Hull, T., The factorization method, Revs. Mod. Phys. 23 (1951), 21–68. [11] Kamran, N., and Tenenblat, K., Laplace transformation in higher dimensions, Duke Mathematical Journal 84 (1996), 237–266 . [12] Moutard, Th. F., Sur la construction des équations de la forme z^ (−1) z_(xy) = λ(x, y), qui admettent une intégrale générale explicite, J. de L’Ecole Polytech. Cahier 45 (1878), 834. [13] Ushveridze, A., Quasi-exactly solvable models in quantum mechanics, IOP, Bristol, 1994. [14] Vassiliou, P. J., On some geometry associated with a generalised Toda lattice, Bull. Austral. Math. Soc. 49 (1994), 439–462. [15] Veselov, A. P., and and Novikov, S. P., Exactly solvable periodic two-dimensional Schrödinger operators, Uspekhi Mat. Nauk 50 (1995), 171–172. [16] Witten, E., Dynamical breaking of supersymmetry, Nucl. Phys. B188 (1981), 513–555. [17] Witten, E., Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661–692.
dspace.entity.typePublication
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublication.latestForDiscovery7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezlopez39preprint.pdf
Size:
224.05 KB
Format:
Adobe Portable Document Format

Collections