Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Marshall’s p-invariant for semianalytic set germs

dc.book.titleContribuciones matemáticas : homenaje al profesor Enrique Outerelo Domínguez
dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.date.accessioned2023-06-20T13:38:40Z
dc.date.available2023-06-20T13:38:40Z
dc.date.issued2004
dc.description.abstractThe invariant p(V ) has been introduced by M. Marshall as a measure of the complexity of semialgebraic sets of a real algebraic variety V . This invariant is defined as the least integer such that every semialgebraic set S ⊂ V has a separating family with p(V ) polynomials. In this paper we provide estimates for the invariant p in the case of analytic set germs. One of the tools we use is a realization theorem which is interesting by itself.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipRAAG
dc.description.sponsorshipGAAR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17191
dc.identifier.isbn8474917670
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53174
dc.language.isoeng
dc.page.final32
dc.page.initial21
dc.page.total406
dc.publication.placeMadrid
dc.publisherComplutense
dc.relation.projectIDHPRN-CT-2001-0027
dc.relation.projectIDBFM2002-04797.
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordSeparating familie
dc.subject.keywordSemianalytic germs
dc.subject.keywordSemialgebraic sets.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn Marshall’s p-invariant for semianalytic set germs
dc.typebook part
dcterms.referencesC. Andradas, L. Brocker, J. Ruiz: Constructible sets in real geometry. Ergeb.Math. 33, Springer-Verlag, Berlin 1996. C. Andradas, A. Dıaz–Cano: Closed stability index of excellent henselian local rings. To appear in Math. Z.. E. Becker: On the real spectrum of a ring and its application to semialgebraic geometry. Bulletin AMS 15 (1986), 19–60. E. Bierstone, P.D. Milman: Local resolution of singularities. Lecture Notes in Math. 1420 (1990), 42–64. J. Bochnak, M. Coste, M.F. Roy: Real algebraic geometry. Ergeb. Math. 36,Springer-Verlag, Berlin 1998. L. Brocker: On basic semialgebraic sets. Expo. Math. 9 (1991), 289–334. Spaces of orderings and semialgebraic sets. Can. Math. Soc. Conf.Proc. 4 (1984), 231–248. M. Marshall: Separating families for semialgebraic sets. Manuscripta math.80 (1993), 73–79. Quotients and inverse limits of spaces of orderings. Can. J. Math.31 (1979), 604–616. J.M. Ruiz: A note on a separation problem. Arch. Math. 43 (1984), 422–426.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15.pdf
Size:
184.63 KB
Format:
Adobe Portable Document Format