On Marshall’s p-invariant for semianalytic set germs
dc.book.title | Contribuciones matemáticas : homenaje al profesor Enrique Outerelo Domínguez | |
dc.contributor.author | Andradas Heranz, Carlos | |
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.date.accessioned | 2023-06-20T13:38:40Z | |
dc.date.available | 2023-06-20T13:38:40Z | |
dc.date.issued | 2004 | |
dc.description.abstract | The invariant p(V ) has been introduced by M. Marshall as a measure of the complexity of semialgebraic sets of a real algebraic variety V . This invariant is defined as the least integer such that every semialgebraic set S ⊂ V has a separating family with p(V ) polynomials. In this paper we provide estimates for the invariant p in the case of analytic set germs. One of the tools we use is a realization theorem which is interesting by itself. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | RAAG | |
dc.description.sponsorship | GAAR | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17191 | |
dc.identifier.isbn | 8474917670 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53174 | |
dc.language.iso | eng | |
dc.page.final | 32 | |
dc.page.initial | 21 | |
dc.page.total | 406 | |
dc.publication.place | Madrid | |
dc.publisher | Complutense | |
dc.relation.projectID | HPRN-CT-2001-0027 | |
dc.relation.projectID | BFM2002-04797. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Separating familie | |
dc.subject.keyword | Semianalytic germs | |
dc.subject.keyword | Semialgebraic sets. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On Marshall’s p-invariant for semianalytic set germs | |
dc.type | book part | |
dcterms.references | C. Andradas, L. Brocker, J. Ruiz: Constructible sets in real geometry. Ergeb.Math. 33, Springer-Verlag, Berlin 1996. C. Andradas, A. Dıaz–Cano: Closed stability index of excellent henselian local rings. To appear in Math. Z.. E. Becker: On the real spectrum of a ring and its application to semialgebraic geometry. Bulletin AMS 15 (1986), 19–60. E. Bierstone, P.D. Milman: Local resolution of singularities. Lecture Notes in Math. 1420 (1990), 42–64. J. Bochnak, M. Coste, M.F. Roy: Real algebraic geometry. Ergeb. Math. 36,Springer-Verlag, Berlin 1998. L. Brocker: On basic semialgebraic sets. Expo. Math. 9 (1991), 289–334. Spaces of orderings and semialgebraic sets. Can. Math. Soc. Conf.Proc. 4 (1984), 231–248. M. Marshall: Separating families for semialgebraic sets. Manuscripta math.80 (1993), 73–79. Quotients and inverse limits of spaces of orderings. Can. J. Math.31 (1979), 604–616. J.M. Ruiz: A note on a separation problem. Arch. Math. 43 (1984), 422–426. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a74c23fe-4059-4e73-806b-71967e14ab67 | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | a74c23fe-4059-4e73-806b-71967e14ab67 |
Download
Original bundle
1 - 1 of 1