Characterizing the Blaschke connection

dc.contributor.authorMuñoz Masqué, Jaime
dc.contributor.authorValdés Morales, Antonio
dc.date.accessioned2023-06-20T18:48:18Z
dc.date.available2023-06-20T18:48:18Z
dc.date.issued1999-11-30
dc.description.abstractThe authors introduce a planar web on a 2-dimensional surface M as a special G -structure. The classical construction by W. Blaschke associates a connection to every planar web. The authors deduce that the Blaschke connection is the only natural one
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22450
dc.identifier.doi10.1016/S0926-2245(99)00036-4
dc.identifier.issn0926-2245
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0926224599000364
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58668
dc.issue.number3
dc.journal.titleDifferential Geometry and Its Applications
dc.language.isoeng
dc.page.final243
dc.page.initial237
dc.publisherElsevier Science
dc.relation.projectIDPB95–0124
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordBlaschke connection
dc.subject.keyworddifferential invariant
dc.subject.keywordjet bundle
dc.subject.keywordlinear frame
dc.subject.keywordnatural connection
dc.subject.keywordthreeweb
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleCharacterizing the Blaschke connection
dc.typejournal article
dc.volume.number11
dcterms.referencesM. Atiyah, R. Bott and V.K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973) 279–330. W. Blaschke and G. Bol, Geometrie der Gewebe (Springer, Berlin, 1938). S.S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc. (N.S.) 72 (1966) 167–219. D.B.A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975) 631–645. J. Gancarzewicz and I. Kolár, Some gauge-natural operators on linear connections, Monatsh. Math. 111 (1991) 23–33. V.V. Goldberg, Theory of Multicodimensional .n C 1/-Webs, Mathematics and Its Applications 44 (Kluwer, Dordrecht, 1988). V.V. Goldberg, On a linearizability condition for a three-web on a two-dimensional manifold, in: Differential Geometry, Proc. 3rd Int. Symp. Peniscola, Spain, 1988, Lecture Notes in Math. 1410 (Springer, Berlin–New York, 1989) 223–239. P.L. García Pérez and J. Muñoz Masqué, Differential invariants on the bundles of linear frames, J. Geom. Phys. 7 (1990) (3) 395–418. S. Kobayashi, Transformation Groups in Differential Geometry (Springer, Berlin, 1972). S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I (J. Wiley, New York, 1963). I. Kolár, P.W. Michor and J. Slovák, Natural Operations in Differential Geometry (Springer, Berlin, 1993). A. Kumpera, Invariants différentiels d’un pseudogroupe de Lie I, II, J. Differential Geometry 10 (1975) 289–345 and 347–416. A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, II, Kon. Nederl. Akad. Wetensch. Proc. A 58 (1955) 390–403. A. Nijenhuis, Invariant differentiation techniques, Proceedings of the Conference on Geometric Methods in Non-Linear Field Theory, Camigliatello Silano (Cosenza) 1985 (World Scientific, 1985) 249–266. P.J. Olver, Equivalence, Invariants, and Symmetry (Cambridge University Press, Cambridge, 1995). R. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959) 125–141. J. Slovák, Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (1988) (3) 273–283. J. Slovák, On natural connections on Riemannian manifolds, Comment. Math. Univ. Carolin. 30 (1989) 389–393. S. Sternberg, Lectures on Differential Geometry (Prentice-Hal, Englewood Cliffs, 1964). F. Takens, A global version of the inverse problem of the calculus of variations, J. Differential Geom. 14 (1978) 543–562. C.L. Terng, Natural vector bundles and natural differential operators, Amer. J. Math. 100 (1978) 775–828. T.Y. Thomas, The Differential Invariants of Generalized Spaces (Cambridge University Press, London, 1934).
dspace.entity.typePublication
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscovery2ee189aa-d1f1-45ca-a646-7433de5952b9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ValdesMo11.pdf
Size:
66.91 KB
Format:
Adobe Portable Document Format

Collections