Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, María Victoria
dc.contributor.authorLópez Moya, Marcos
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorNievas Rosillo, Mireia
dc.contributor.authorSatalecka, Konstanzja
dc.contributor.authorScapin, Valeria
dc.date.accessioned2023-06-18T06:51:36Z
dc.date.available2023-06-18T06:51:36Z
dc.date.issued2016-01
dc.description© ESO 2016. Artículo firmado por 147 autores. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESSMAGIC/2010/0.
dc.description.abstractAims. We investigate the extension of the very high-energy spectral tail of the Crab Pulsar at energies above 400 GeV. Methods. We analyzed ~320 h of good-quality Crab data obtained with the MAGIC telescope from February 2007 to April 2014. Results. We report the most energetic pulsed emission ever detected from the Crab Pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with those measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board the Fermi satellite. When making a joint fit of the LAT and MAGIC data above 10 GeV the photon indices of the spectra differ by 0.5 ± 0.1. Conclusions. Using data from the MAGIC telescopes we measured the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least 5 × 106. These results strongly suggest IC scattering off low-energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipGerman BMBF
dc.description.sponsorshipGerman MPG
dc.description.sponsorshipItalian INFN
dc.description.sponsorshipItalian INAF
dc.description.sponsorshipSwiss National Fund SNF
dc.description.sponsorshipJapanese JSPS
dc.description.sponsorshipJapanese MEXT
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipSpanish Consolider-Ingenio 2010 programme
dc.description.sponsorshipAcademy of Finland
dc.description.sponsorshipCroatian Science Foundation (HrZZ)
dc.description.sponsorshipUniversity of Rijeka
dc.description.sponsorshipDFG Collaborative Research Centers
dc.description.sponsorshipPolish MNiSzW
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37156
dc.identifier.doi10.1051/0004-6361/201526853
dc.identifier.issn1432-0746
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/201526853
dc.identifier.relatedurlhttp://www.aanda.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24424
dc.journal.titleAstronomy & astrophysics
dc.language.isoeng
dc.publisherEDP Sciencies
dc.relation.projectIDFPA2012-39502
dc.relation.projectIDSEV-2012-0234
dc.relation.projectIDCPAN CSD2007-00042
dc.relation.projectIDCSD2009-00064
dc.relation.projectID268740
dc.relation.projectID09/176
dc.relation.projectID13.12.1.3.02
dc.relation.projectIDSFB823/C4
dc.relation.projectIDSFB876/C3
dc.relation.projectID745/N-HESSMAGIC/2010/0
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordGamma-ray pulsars
dc.subject.keywordHigh-energy emission
dc.subject.keywordOuter gap model
dc.subject.keywordMajor upgrade
dc.subject.keywordSlot gaps
dc.subject.keywordTelescope
dc.subject.keywordRadiation
dc.subject.keywordSpectra
dc.subject.keywordNebula
dc.subject.keywordAcceleration.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleTeraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC
dc.typejournal article
dc.volume.number585
dcterms.references1) Abdo, A. A., Ackermann, M., Ajello, M., et al., 2010, ApJ, 708, 1254. 2) Abdo, A. A., Ajello, M., Allafort, A., et al., 2013, ApJS, 208, 17. 3) Aharonian, F. A., Bogovalov, S. V., Khangulyan, D., 2012, Nature, 482, 507. 4) Albert, J., Aliu, E., Anderhub, H., et al., 2007, Nucl. Instr. Methods, 583, 494. 5) Albert, J., Aliu, E., Anderhub, H., et al., 2008, Nucl. Instr. Methods, 588, 424. 6) Aleksić, J., Antonelli, L. A., Antoranz, P., et al., 2010, A&A, 524, A77. 7) Aleksić, J., Álvarez, E. A., Antonelli, L. A., et al., 2011, ApJ, 742, 43. 8) Aleksić, J., Álvarez, E. A., Antonelli, L. A., et al., 2012a, A&A, 540, A69. 9) Aleksić, J., Álvarez, E. A., Antonelli, L. A., et al., 2012b, Astropart. Phys., 35, 435. 10) Aleksić, J., Ansoldi, S., Antonelli, L. A., et al., 2014, A&A, 565, L12. 11) Aleksić, J., Ansoldi, S., Antonelli, L. A., et al., 2015, J. High Energy Astrophys., 5, 30. 12) Aleksić, J., Ansoldi, S., Antonelli, L. A., et al., 2016a, Astropart. Phys., 72, 61. 13) Aleksić, J., Ansoldi, S., Antonelli, L. A., et al., 2016b, Astropart. Phys., 72, 76. 14) Aliu, E., Anderhub, H., Antonelli, L. A., et al., 2008, Science, 322, 1221. 15) Aliu, E., Anderhub, H., Antonelli, L. A., et al., 2009, Astropart. Phys., 30, 293. 16) Aliu, E., Arlen, T., et al. (VERITAS Collaboration), 2011, Science, 334, 69. 17) Arons, J., 1983, ApJ, 266, 215. 18) Bednarek, W., 2012, MNRAS, 424, 2079. 19) Bertero, M., 1989, Advances in Electronics and Electron Physics (New York: Academic Press), 75, 1. 20) Bogovalov, S. V., 2014, MNRAS, 443, 2197. 21) Bogovalov, S. V., Aharonian, F. A., 2000, MNRAS, 313, 504. 22) Cheng, K. S., Ho, C., Ruderman, M., 1986, ApJ, 300, 500. 23) Cheng, K. S., Ruderman, M., Zhang, L., 2000, ApJ, 537, 964. 24) de Jager, O. C., Raubenheimer, B. C., Swanepoel, J. W. H., 1989, A&A, 221, 180. 25) Fierro, J. M., Michelson, P. F., Nolan, P. L., Thompson, D. J., 1998, ApJ, 494, 734. 26) Fomin, V. P., Stepanian, A. A., Lamb, R. C., et al., 1994, Astropart. Phys., 2, 137. 27) Goebel, F., Bartko, H., Carmona, E., et al., 2008, Int. Cosmic Ray Conf., 3, 1481. 28) Harding, A. K., Kalapotharakos, C., 2015, ApJ, 811, 63. 29) Hirotani, K., 2011, ApJ, 733, L49. 30) Hirotani, K., 2013, ApJ, 766, 98. 31) Hobbs, G. B., Edwards, R. T., Manchester, R. N., 2006, MNRAS, 369, 655. 32) Kalapotharakos, C., Harding, A. K., Kazanas, D., 2014, ApJ, 793, 97. 33) Kuiper, L., Hermsen, W., Cusumano, G., et al., 2001, A&A, 378, 918. 34) Li, T.-P., Ma, Y.-Q., 1983, ApJ, 272, 317. 35) Lyne, A. G., Pritchard, R. S., Graham-Smith, F., 1993, MNRAS, 265, 1003. 36) Lyutikov, M., Otte, N., McCann, A., 2012, ApJ, 754, 33. 37) Madsen, K. K., Reynolds, S., Harrison, F., et al., 2015, ApJ, 801, 66. 38) Mochol, I., Pétri, J., 2015, MNRAS, 449, L51. 39) Moralejo, R. A., Gaug, M., Carmona, E., et al., 2010, MARS: The MAGIC Analysis and Reconstruction Software (Astrophysics Source Code Library). 40) Moya, M. L., 2006, Ph.D. Thesis, Fac CC Físicas, UCM. 41) Muslimov, A. G., Harding, A. K., 2004, ApJ, 606, 1143. 42) Rolke, W. A., López, A. M., Conrad, J., 2005, Nucl. Instr. Meth. Phys. Res. A, 551, 493. 43) Romani, R. W., Yadigaroglu, I.-A., 1995, ApJ, 438, 314. 44) Takata, J., Shibata, S., Hirotani, K., Chang, H.-K., 2006, MNRAS, 366, 1310. 45) Viganò, D., Torres, D. F., 2015, MNRAS, 449, 3755. 46) Viganò, D., Torres, D. F., Hirotani, K., Pessah, M. E., 2015, MNRAS, 447, 2649.
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication9f2c0e34-0edd-497a-bbd0-fbd9d348e85c
relation.isAuthorOfPublication8b5d96d7-bd11-4ee4-87d0-258a1e077e26
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication355179c2-4111-4313-8c52-8bfc0775c2b3
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM140libre.pdf
Size:
276.35 KB
Format:
Adobe Portable Document Format

Collections