Be-CoDiS: A mathematical model to predict the risk of human
diseases spread between countries. Validation and application to the 2014-2015 Ebola Virus Disease epidemic
dc.contributor.author | Ivorra, Benjamín Pierre Paul | |
dc.contributor.author | Ngom, Diène | |
dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
dc.date.accessioned | 2023-06-18T05:40:32Z | |
dc.date.available | 2023-06-18T05:40:32Z | |
dc.date.issued | 2015-09-01 | |
dc.description.abstract | Ebola virus disease is a lethal human and primate disease that currently requires a particular attention from the international health authorities due to important outbreaks in some Western African countries and possible spread to other continents, which has already occurred in the USA and Spain. Regarding the emergency of this situation, there is a need of development of decision tools to assist the authorities to focus their efforts in important factors to eradicate Ebola. In particular, mathematical modelling can help to predict the possible evolution of the Ebola outbreaks and to give some recommendations about surveillance. In this work, we propose a novel spatial and temporal model, called Be-CoDiS (BetweenCOuntries Disease Spread), to study the evolution of human diseases between countries. The goal is to simulate the spread of a particular disease and identify risk zones worldwide. The main interesting characteristics of Be-CoDiS are the consideration of the migratory flux between countries and control measure effects and the use of time dependent coefficients adapted to each country. First, we focus on the mathematical formulation of each component of the model. Next, in order to validate our approach, we consider various numerical experiments regarding the 2014 Ebola epidemic. In particular, we study the ability of the model in predicting the EVD evolution at 30 days and until the end of the epidemic. The results are compared to real data and other models outputs found in the literature. Finally, a brief parameter sensitivity analysis is done. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Economia y Competitividad (España) | |
dc.description.sponsorship | Junta de Andalucía | |
dc.description.sponsorship | European Regional Development Fund (ERDF) | |
dc.description.sponsorship | Banco de Santander | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | submitted | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/28809 | |
dc.identifier.doi | 10.1007/s11538-015-010 | |
dc.identifier.issn | 0092-8240 | |
dc.identifier.officialurl | http://link.springer.com/article/10.1007%2Fs11538-015-0100-x | |
dc.identifier.relatedurl | http://arxiv.org | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/22981 | |
dc.issue.number | 9 | |
dc.journal.title | Bulletin of mathematical biology | |
dc.language.iso | eng | |
dc.page.final | 1704 | |
dc.page.initial | 1668 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2011-22658 | |
dc.relation.projectID | P12-TIC301 | |
dc.relation.projectID | Research group MOMAT (Ref. 910480) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.87 | |
dc.subject.cdu | 51-76 | |
dc.subject.keyword | Epidemiological modelling | |
dc.subject.keyword | Ebola Virus Disease | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.ucm | Enfermedades infecciosas | |
dc.subject.ucm | Biomatemáticas | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.subject.unesco | 3205.05 Enfermedades Infecciosas | |
dc.subject.unesco | 2404 Biomatemáticas | |
dc.title | Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries. Validation and application to the 2014-2015 Ebola Virus Disease epidemic | |
dc.type | journal article | |
dc.volume.number | 77 | |
dcterms.references | [1] M. Anderson. Population biology of infectious diseases: Part 1. Nature, 280:361–367, 1979. [2] J. Astacio, D.M. Briere, J. Martinez, F. , Rodriguez, and N. Valenzuela-Campos. Mathematical models to study the outbreaks of ebola. Mathematical and Theoretical Biology Report, Arizona State University., 2014 [3] C. Bowman, A.B. Gumel, P. Van den Driessche, J. Wu, and H. Zhu. A mathematical model for assessing control strategies against west nile virus. Bulletin of Mathematical Biology, 67(5):1107 – 1133, 2005. [4] F. Brauer and C. Castillo-Ch´avez. Mathematical Models in Population Biology and Epidemiology. Texts in applied mathematics. Springer, 2001. [5] Centers for Disease Control. Ebola disease. Centers for Disease Control Website, 2014. [6] G. Chowell, N.W. Hengartner, C. Castillo-Chavez, P.W. Fenimore, and J.M. Hyman. The basic reproductive number of ebola and the effects of public health measures: the cases of congo and uganda. Journal of Theoretical Biology, 229(1):119 – 126, 2004. [7] D.L. DeAngelis and L.J. Gross. Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. Chapman & Hall, 1992. [8] R.T.D. Emond, B. Evans, E.T.W. Bowen, and G. Lloyd. A case of ebola virus infection. Br Med J.,2:541–544, 1977. [9] D. Fisman, E. Khoo, and A. Tuite. Early epidemic dynamics of the west african 2014 ebola outbreak: Estimates derived with a simple two-parameter model. PLOS Currents Outbreaks, 1, 2014. [10] P.N. Fonkwo. Pricing infectious disease. nthe economic and health implications of infectious diseases. EMBO Rep, 9(1):S13–S17, 2008. [11] E. Forgoston and I. Schwartz. Predicting unobserved exposures from seasonal epidemic data. Bulletin of Mathematical Biology, 75(9):1450–1471, 2013. [12] M.F.C. Gomes, A. Pastore y Piontti, L. Rossi, D. Chao, I. Longini, M.E. Halloran, and A. Vespignani. Assessing the international spreading risk associated with the 2014 west african ebola outbreak. PLOS Currents Outbreaks, 1, 2014. [13] J.A. Guy and S. Nikola. Quantifying global international migration flows. Science, 343(6178):1520–1522, 2014. [14] N. Hernandez-Ceron, Z. Feng, and C. Castillo-Chavez. Discrete epidemic models with arbitrary stage distributions and applications to disease control. Bulletin of Mathematical Biology, 75(10):1716–1746, 2013. [15] B. Hewlett and B. Hewlett. Ebola, Culture and Politics: The Anthropology of an Emerging Disease. Case studies on contemporary social issues. Cengage Learning, 2007. [16] B. Ivorra, B. Martínez-López, J.M. Sánchez-Vizcaíno, and A.M. Ramos. Mathematical formulation and validation of the Be-FAST model for classical swine fever virus spread between and within farms. Annals of Operations Research, 219(1):25–47, 2014. [17] J. Legrand, R.F Grais, P.Y. Boelle, A.J. Valleron, and A. Flahault. Understanding the dynamics of ebola epidemics. Med. Hypotheses., 135(4):610–621, 2007. [18] P.E. Lekone and B.F. Finkenst¨adt. Statistical inference in a stochastic epidemic seir model with control intervention: Ebola as a case study. Biometrics, 62(4):1170–1177, 2006. [19] E.M. Leroy, P. Rouquet, P. Formenty, S. Souquière, A. Kilbourne, J.M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S.R. Zaki, and P.E. Rollin. Multiple ebola virus transmission events and rapid decline of central african wildlife. Science, 303(5656):387–390, 2004. [20] B. Martínez-López, B. Ivorra, E. Fernández-Carrión, A.M. Perez, A. Medel-Herrero, F. Sánchez Vizcaíno, C. Gortázar, A.M. Ramos, and J.M. Sánchez-Vizcaíno. A multi-analysis approach for spacetime and economic evaluation of risks related with livestock diseases: The example of fmd in peru. Preventive Veterinary Medicine, 114(1):47–63, 2014. [21] B. Martínez-López, B. Ivorra, D. Ngom, A.M. Ramos, and J.M. Sánchez-Vizcaíno. A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus. II. Validation of the model. Veterinary Microbiology, 155(1):21 – 32, 2012. [22] B. Martínez-López, B. Ivorra, A.M. Ramos, E. Fernández-Carrión, T. Alexandrov, and J. M. Sánchez Vizcaíno. Evaluation of the risk of classical swine fever spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model be-fast: The example of bulgaria. Veterinary Microbiology, 165(1–2):79 – 85, 2013. [23] B. Martínez-López, B. Ivorra, A.M. Ramos, and J.M. Sánchez-Vizcaíno. A novel spatial and stochastic model to evaluate the within- and between-farm transmission of classical swine fever virus. I. General concepts and description of the model. Veterinary Microbiology, 147(3–4):300 – 309, 2011. [24] E. Massad, M.N. Burattini, L.F. Lopez, and Coutinhon F.A. Forecasting versus projection models in epidemiology: the case of the sars epidemics. Med. Hypotheses., 65(1):17–22, 2005. [25] M.I. Meltzer, C.Y. Atkins, S. Santibanez, B. Knust, B.W. Petersen, E.D. Ervin, S.T. Nichol, I.K. Damon, and M.L. Washington. Estimating the future number of cases in the ebola epidemic – Liberia and Sierra Leone, 2014–2015. Centers for Disease Control. MMWR / Early Release, 63, 2014. [26] C. J. Peters and J. W. Peters. An introduction to ebola: The virus and the disease. Journal of Infectious Diseases, 179(Supplement 1):ix–xvi, 1999. [27] T.J. Piercy, S.J. Smither, J.A. Steward, L. Eastaugh, and M.S. Lever. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. Journal of Applied Microbiology, 109(5):1531–1539, 2010. [28] H.R. Thieme. Mathematics in Population Biology. Mathematical Biology Series. Princeton University Press, 2003. [29] World Health Organization. Fact sheet no103: Ebola virus disease. World Health Organization Website, 2014. [30] World Health Organization. Global alert and response: Ebola virus disease. World Health Organization Website, 2014. [31] World Health Organization Response Team. Ebola virus disease in west africa - the first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371:1481–1495, 2014. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 | |
relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
relation.isAuthorOfPublication.latestForDiscovery | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 |