Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pyramidal values

dc.contributor.authorFlores, Ramón
dc.contributor.authorMolina, Elisenda
dc.contributor.authorTejada Cazorla, Juan Antonio
dc.date.accessioned2023-06-19T13:25:04Z
dc.date.available2023-06-19T13:25:04Z
dc.date.issued2014-06
dc.description.abstractWe propose and analyze a new type of values for cooperative TU-games, which we call pyramidal values. Assuming that the grand coalition is sequentially formed, and all orderings are equally likely, we define a pyramidal value to be any expected payoff in which the entrant player receives a salary, and the rest of his marginal contribution to the just formed coalition is distributed among the incumbent players. We relate the pyramidal-type sharing scheme we propose with other sharing schemes, and we also obtain some known values by means of this kind of pyramidal procedures. In particular, we show that the Shapley value can be obtained by means of an interesting pyramidal procedure that distributes nonzero dividends among the incumbents. As a result, we obtain an alternative formulation of the Shapley value based on a measure of complementarity between two players. Finally, we introduce the family of proportional pyramidal values, in which an incumbent receives a dividend in proportion to his initial investment, measured by means of his marginal contribution.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGovernment of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26442
dc.identifier.doi10.1007/s10479-013-1509-y
dc.identifier.issn0254-5330
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs10479-013-1509-y
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33616
dc.issue.number1
dc.journal.titleAnnals of operations research
dc.language.isoeng
dc.page.final252
dc.page.initial233
dc.publisherSpringer
dc.relation.projectIDMTM2011-27892
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordGame theory
dc.subject.keywordTU games
dc.subject.keywordPyramidal values
dc.subject.keywordProcedural values
dc.subject.keywordShapley value
dc.subject.keywordCo-values
dc.subject.keywordConsensus values
dc.subject.keywordEgalitarian Shapley values
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titlePyramidal values
dc.typejournal article
dc.volume.number217
dspace.entity.typePublication
relation.isAuthorOfPublication77359969-4313-4334-adef-1c2d7413fbb5
relation.isAuthorOfPublication.latestForDiscovery77359969-4313-4334-adef-1c2d7413fbb5

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Tejada201springer.pdf
Size:
664.68 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
ws122418.pdf_sequence=1
Size:
404.51 KB
Format:
Unknown data format

Collections