Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

String equations for the unitary matrix model and the periodic flag manifold

dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorGuha, Partha
dc.date.accessioned2023-06-20T20:09:28Z
dc.date.available2023-06-20T20:09:28Z
dc.date.issued1994-03
dc.description©Springer. One of us MM like to thank Prof. Francisco Guil for initial collaboration and PG like to thank Prof. Pierre van Moerbeke for enlighting discussion. We are also grateful to Dr. Sacha Sardo Infirri for stimulating discussion.
dc.description.abstractThe periodic flag manifold (in the Sato Grassmannian context) description of the modified Korteweg-de Vries hierarchy is used to analyse the translational and scaling self-similar solutions of this hierarchy. These solutions are characterized by the string equations appearing in the double scaling limit of the symmetric unitary matrix model with boundary terms. The moduli space is a double covering of the moduli space in the Sato Grassmannian for the corresponding self-similar solutions of the Korteweg-de Vries hierarchy, i.e. of stable 2D quantum gravity. The potential modified Korteweg-de Vries hierarchy, which can be described in terms of a line bundle over the periodic flag manifold, and its self-similar solutions corresponds to the symmetric unitary matrix model. Now, the moduli space is in one-to-one correspondence with a subset of codimension one of the moduli space in the Sato Grassmannian corresponding to self-similar solutions of the Korteweg-de Vries hierarchy.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32530
dc.identifier.doi10.1007/BF02099775
dc.identifier.issn0010-3616
dc.identifier.officialurlhttp://dx.doi.org/10.1007/BF02099775
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/9307016
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59705
dc.issue.number2
dc.journal.titleCommunications in mathematical physics
dc.language.isoeng
dc.page.final232
dc.page.initial215
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keyword2-Dimensional quantum-gravity
dc.subject.keywordGeometry
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleString equations for the unitary matrix model and the periodic flag manifold
dc.typejournal article
dc.volume.number161
dcterms.references[1] M.Adler and J.Moser, Commun.Math.Phys. 61 (1978) 1. [2] K.Anagnostopoulos, M.Bowick, and A.Schwarz, Commun.Math.Phys. 148 (1992) 148. [3] E.Brezin and V.Kazakov, Phys.Lett. 236B (1990) 144; M.Douglas and M.Shenker, Nucl.Phys. B335 (1990) 685; D.Gross and A.Migdal, Phys.Rev.Lett. 64 (1990) 127. [4] S.Dalley, C.Johnson, and T.Morris, Nuc.Phys. B368 (1992) 625, 655; S.Dalley, preprint PUPT, 1290 (1991); C.Johnson, T.Morris, and A.WΞätterstam, Phys.Lett. 291B (1992) 11; C.Johnson, T.Morris, and P.White, Phys.Lett. 292B (1992) 283. [5] S.Dalley, C.Johnson, T.Morris, and A.Wättersman, Mod.Phys.Lett. A29 (1992) 2753; A.Wättersman, Phys.Lett. 263B (1991) 51. [6] I.Gel’fand and L.Dickii, Russ.Math.Surv. 30 (1975) 67; Func.Anal.Appl. 13 (1979) 6. [7] F.Guil and M.Mañaas, J.Math.Phys. 32 (1991) 1744,; M.Mañas, Homogeneous manifolds, factorization problems and modified KdV equations in Research reports in Physics: Nonlinear evolution equations and dynamical systems edited by V.Mahankov and O.Pashaev, Springer (1991), Berlin; M.Mañas, Problemas de factorización y sistemas integrables PhD thesis, Universidad Complutense de Madrid (1991), Madrid. [8] F.Guil and M.Mañas, Self–similarity in the KdV hierarchy. Geometry of the string equations in Nonlinear Evolution Equations and Dynamical Systems’92 edited by V.Mahankov, O.Pashaev, and I.Puzynin, World Scientific (1993), Singapore; Strings equations for the KdV hierarchy and the Grassmannian J.Phys.A: Math. & Gen. (1993) to appear. [9] V.Kac and A.Schwarz, Phys.Lett. 257B (1991) 329. [10] M.Kontsevich, Commun.Math.Phys. 147 (1992) 1. [11] J.Minahan, Phys.Lett. 265B (1991) 382; Phys.Lett. 268B (1991) 29. [12] G.Moore, Commun.Math.Phys. 133 (1990) 261. [13] A.Nikiforov and V.Ouvarov, Fonctions Spéciales de la Physique MathΘ´ematique, Mir (1983), Moscow. [14] S.Novikov, Func.Anal.Appl. 8 (1974) 236. [15] V.Periwal and D.Shevitz, Phys.Rev.Lett. 64 (1990) 1326; Nuc.Phys. B344 (1990) 731; K.Anagnostopoulos, M.Bowick, and N.Ishisbashi, Mod.Phys.Lett. A6 (1991) 2727. [16] A.Pressley and G.Segal, Loop groups Oxford University Press (1985), Oxford. [17] M.Sato, RIMS Kokyuroku 439 (1981) 30. [18] A.Schwarz, Mod.Phys.Lett. A6 (1991) 611 and 2713 [19] G.Segal and G.Wilson, Publ.Math.IHES 61 (1985) 1. [20] G.Wilson, C.R.Acad.Sci. Paris 299 (1984) 587; Phil.Trans.R.Soc. London A 315 (1985) 393; Algebraic curves and soliton equations in PM 60: Geometry of today, Giornati de Giometria, Roma 1984, Birkhäuser (1985), Boston. [21] E.Witten, Surv.Diff.Geom. 1 (1991) 243.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas61preprint.pdf
Size:
211.13 KB
Format:
Adobe Portable Document Format

Collections