Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain

dc.contributor.authorMonje, Leticia
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorRosado, Carlos
dc.contributor.authorSánchez-Montañés, Manuel
dc.date.accessioned2025-01-16T12:30:15Z
dc.date.available2025-01-16T12:30:15Z
dc.date.issued2022
dc.description.abstractTime series forecasting of passenger demand is crucial for optimal planning of limited resources. For smart cities, passenger transport in urban areas is an increasingly important problem, because the construction of infrastructure is not the solution and the use of public transport should be encouraged. One of the most sophisticated techniques for time series forecasting is Long Short Term Memory (LSTM) neural networks. These deep learning models are very powerful for time series forecasting but are not interpretable by humans (black-box models). Our goal was to develop a predictive and linguistically interpretable model, useful for decision making using large volumes of data from different sources. Our case study was one of the most demanded bus lines of Madrid. We obtained an interpretable model from the LSTM neural network using a surrogate model and the 2-tuple fuzzy linguistic model, which improves the linguistic nterpretability of the generated Explainable Artificial Intelligent (XAI) model without losing precision
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationMonje, L.; Carrasco, R.A.; Rosado, C.; Sánchez-Montañés, M. Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain. Mathematics 2022, 10, 1428. https:// doi.org/10.3390/math10091428
dc.identifier.doi10.3390/math10091428
dc.identifier.officialurlhttps:// doi.org/10.3390/math1009142
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114680
dc.issue.number1428
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu656.025.2
dc.subject.cdu004.8
dc.subject.cdu519.216.3
dc.subject.keywordDeep learning
dc.subject.keywordLSTM
dc.subject.keywordXAI
dc.subject.keywordTime series
dc.subject.keywordPassenger forecasting
dc.subject.keywordSmart city
dc.subject.keywordSurrogate model
dc.subject.keyword2-tuple fuzzy model
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadísticas e indicadores sociales
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.14 Técnicas de Predicción Estadística
dc.subject.unesco3329.07 Transporte
dc.titleDeep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-16-2022-MATH-oficial (1).pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format

Collections