In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications
dc.contributor.author | Bartolomé Vílchez, Javier | |
dc.contributor.author | Hidalgo Alcalde, Pedro | |
dc.contributor.author | Maestre Varea, David | |
dc.contributor.author | Cremades Rodríguez, Ana Isabel | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.date.accessioned | 2023-06-19T13:26:04Z | |
dc.date.available | 2023-06-19T13:26:04Z | |
dc.date.issued | 2014-04-21 | |
dc.description | © 2014 AIP Publishing LLC. This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid. | |
dc.description.abstract | Electric field induced mechanical resonances of In2O3 microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152GPa are obtained. A quality factor of 1180-3780 is measured from the amplitude-frequency curves, revealing the suitability of In2O3 microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In2O3 and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MINECO | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27135 | |
dc.identifier.doi | 10.1063/1.4872461 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.4872461 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33678 | |
dc.issue.number | 16 | |
dc.journal.title | Applied Physics Letters | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | MAT 2012-31959 | |
dc.relation.projectID | CSD 2009-00013 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Crystalline Boron Nanowires | |
dc.subject.keyword | Elastic Properties | |
dc.subject.keyword | Zno Nanobelts | |
dc.subject.keyword | Mechanics | |
dc.subject.ucm | Física de materiales | |
dc.title | In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications | |
dc.type | journal article | |
dc.volume.number | 104 | |
dcterms.references | 1. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Rep. Prog. Phys. 74, 036101 (2011). 2. J.-W. Han, J.-H. Ahn, M.-W. Kim, J. O. Lee, J.-B. Yoon, and Y.-K. Choi, Small 6, 1197 (2010). 3. E. Gil-Santos, D. Ramos, J. Mart_ınez, M. Fern_andez-Reg_ulez, R. García, A. S. Paulo, M. Calleja, and J. Tamayo, Nat. Nanotechnol. 5, 641 (2010). 4. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005). 5. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 12, 96 (2006). 6. G. Anetsberger, R. Rivie`re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008). 7. K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012). 8. C. R€ohling, M. Niebelsch€utz, K. Brueckner, K. Tonisch, O. Ambacher, and V. Cimalla, Phys. Status Solidi B 247, 2557 (2010). 9. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). 10. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 11. R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Nano Lett. 8, 3668 (2008). 12. M. Lucas, W. Mai, R. Yang, Z. L. Wang, and E. Riedo, Nano Lett. 7, 1314 (2007). 13. H. Ni and X. Li, Nanotechnology 17, 3591 (2006). 14. E. P. S. Tan, Y. Zhu, T. Yu, L. Dai, C. H. Sow, V. B. C. Tan, and C. T. Lim, Appl. Phys. Lett. 90, 163112 (2007). 15. Z. L. Wang, Z. R. Dai, R. Gao, and J. L. Gole, J. Electron Microsc. 51(Suppl.), S79 (2002). 16. H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009). 17. J. Bartolom_e, A. Cremades, and J. Piqueras, J. Mater. Chem. C 1, 6790 (2013). 18. J. J. Roa, G. Oncins, F. T. Dias, V. N. Vieira, J. Schaf, and M. Segarra, Physica C 471, 544 (2011). 19. K. H. L. Zhang, A. Regoutz, R. G. Palgrave, D. J. Payne, R. G. Egdell, A. Walsh, S. P. Collins, D. Wermeille, and R. A. Cowley, Phys. Rev. B. 84, 233301 (2011). 20. See supplementary material at http://dx.doi.org/10.1063/1.4872461 for videos and a more detailed description of the deflection of the rods with the electric field. 21. S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand Company Inc., New York, 1937). 22. H. E. Schoeller, M.S. dissertation, Binghamton University, 2007. 23. A. Walsh, C. Richard, A. Catlow, A. A. Alexey, A. Sokol, and S. M. Woodley, Chem. Mater. 21, 4962 (2009). 24. D. Liu, W. W. Lei, B. Zou, S. D. Yu, J. Hao, K. Wang, B. B. Liu, Q. L. Cui, and G. T. Zou, J. Appl. Phys. 104, 083506 (2008). 25. F. Fuchs and F. Bechstedt, Phys. Rev. B. 77, 155107 (2008). 26. T. Wittkowski, J. Jorzick, H. Seitz, B. Schr€oder, K. Jung, and B. Hillebrands, Thin Solid Films 398–399, 465 (2001). 27.B .-K. Lee, Y.-H. Song, and J.-B. Yoon, in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009 (IEEE, 2009), p. 148. 28. W. Ding, L. Calabri, X. Chen, K. M. Kohlhaas, and R. S. Ruoff, Compos. Sci. Technol. 66, 1112 (2006). 29. C.-H. Lin, H. Ni, X. Wang, M. Chang, Y. J. Chao, J. R. Deka, and X. Li, Small 6, 927 (2010). 30. K. Brueckner, F. Niebelschuetz, K. Tonisch, C. Foerster, V. Cimalla, R. Stephan, J. Pezoldt, T. Staunden, O. Ambacher, and M. A. Hein, Phys. Status Solidi A 208, 357 (2011). 31. J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, ACS Nano 7, 6086 (2013). 32. M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Loncˇar, Appl. Phys. Lett. 103, 131904 (2013). 33. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 584d700c-79ff-4e20-a35d-519d0958238e | |
relation.isAuthorOfPublication | c834e5a4-3450-4ff7-8ca1-663a43f050bb | |
relation.isAuthorOfPublication | 43cbf291-2f80-4902-8837-ea2a9ffaa702 | |
relation.isAuthorOfPublication | da0d631e-edbf-434e-8bfd-d31fb2921840 | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | 584d700c-79ff-4e20-a35d-519d0958238e |
Download
Original bundle
1 - 1 of 1