In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications

dc.contributor.authorBartolomé Vílchez, Javier
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorMaestre Varea, David
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras de Noriega, Javier
dc.date.accessioned2023-06-19T13:26:04Z
dc.date.available2023-06-19T13:26:04Z
dc.date.issued2014-04-21
dc.description© 2014 AIP Publishing LLC. This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid.
dc.description.abstractElectric field induced mechanical resonances of In2O3 microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152GPa are obtained. A quality factor of 1180-3780 is measured from the amplitude-frequency curves, revealing the suitability of In2O3 microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In2O3 and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27135
dc.identifier.citation1. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Rep. Prog. Phys. 74, 036101 (2011). 2. J.-W. Han, J.-H. Ahn, M.-W. Kim, J. O. Lee, J.-B. Yoon, and Y.-K. Choi, Small 6, 1197 (2010). 3. E. Gil-Santos, D. Ramos, J. Mart_ınez, M. Fern_andez-Reg_ulez, R. García, A. S. Paulo, M. Calleja, and J. Tamayo, Nat. Nanotechnol. 5, 641 (2010). 4. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005). 5. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 12, 96 (2006). 6. G. Anetsberger, R. Rivie`re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008). 7. K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012). 8. C. R€ohling, M. Niebelsch€utz, K. Brueckner, K. Tonisch, O. Ambacher, and V. Cimalla, Phys. Status Solidi B 247, 2557 (2010). 9. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). 10. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 11. R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Nano Lett. 8, 3668 (2008). 12. M. Lucas, W. Mai, R. Yang, Z. L. Wang, and E. Riedo, Nano Lett. 7, 1314 (2007). 13. H. Ni and X. Li, Nanotechnology 17, 3591 (2006). 14. E. P. S. Tan, Y. Zhu, T. Yu, L. Dai, C. H. Sow, V. B. C. Tan, and C. T. Lim, Appl. Phys. Lett. 90, 163112 (2007). 15. Z. L. Wang, Z. R. Dai, R. Gao, and J. L. Gole, J. Electron Microsc. 51(Suppl.), S79 (2002). 16. H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009). 17. J. Bartolom_e, A. Cremades, and J. Piqueras, J. Mater. Chem. C 1, 6790 (2013). 18. J. J. Roa, G. Oncins, F. T. Dias, V. N. Vieira, J. Schaf, and M. Segarra, Physica C 471, 544 (2011). 19. K. H. L. Zhang, A. Regoutz, R. G. Palgrave, D. J. Payne, R. G. Egdell, A. Walsh, S. P. Collins, D. Wermeille, and R. A. Cowley, Phys. Rev. B. 84, 233301 (2011). 20. See supplementary material at http://dx.doi.org/10.1063/1.4872461 for videos and a more detailed description of the deflection of the rods with the electric field. 21. S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand Company Inc., New York, 1937). 22. H. E. Schoeller, M.S. dissertation, Binghamton University, 2007. 23. A. Walsh, C. Richard, A. Catlow, A. A. Alexey, A. Sokol, and S. M. Woodley, Chem. Mater. 21, 4962 (2009). 24. D. Liu, W. W. Lei, B. Zou, S. D. Yu, J. Hao, K. Wang, B. B. Liu, Q. L. Cui, and G. T. Zou, J. Appl. Phys. 104, 083506 (2008). 25. F. Fuchs and F. Bechstedt, Phys. Rev. B. 77, 155107 (2008). 26. T. Wittkowski, J. Jorzick, H. Seitz, B. Schr€oder, K. Jung, and B. Hillebrands, Thin Solid Films 398–399, 465 (2001). 27.B .-K. Lee, Y.-H. Song, and J.-B. Yoon, in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009 (IEEE, 2009), p. 148. 28. W. Ding, L. Calabri, X. Chen, K. M. Kohlhaas, and R. S. Ruoff, Compos. Sci. Technol. 66, 1112 (2006). 29. C.-H. Lin, H. Ni, X. Wang, M. Chang, Y. J. Chao, J. R. Deka, and X. Li, Small 6, 927 (2010). 30. K. Brueckner, F. Niebelschuetz, K. Tonisch, C. Foerster, V. Cimalla, R. Stephan, J. Pezoldt, T. Staunden, O. Ambacher, and M. A. Hein, Phys. Status Solidi A 208, 357 (2011). 31. J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, ACS Nano 7, 6086 (2013). 32. M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Loncˇar, Appl. Phys. Lett. 103, 131904 (2013). 33. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
dc.identifier.doi10.1063/1.4872461
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4872461
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33678
dc.issue.number16
dc.journal.titleApplied Physics Letters
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT 2012-31959
dc.relation.projectIDCSD 2009-00013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCrystalline Boron Nanowires
dc.subject.keywordElastic Properties
dc.subject.keywordZno Nanobelts
dc.subject.keywordMechanics
dc.subject.ucmFísica de materiales
dc.titleIn-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications
dc.typejournal article
dc.volume.number104
dspace.entity.typePublication
relation.isAuthorOfPublication584d700c-79ff-4e20-a35d-519d0958238e
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication.latestForDiscovery584d700c-79ff-4e20-a35d-519d0958238e
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ324libre.pdf
Size:
713.57 KB
Format:
Adobe Portable Document Format
Collections