Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surface magnetism in ZnO/Co_3O_4 mixtures

dc.contributor.authorGarcia March, M. A.
dc.contributor.authorJimenez Villacorta, F.
dc.contributor.authorQuesada, A.
dc.contributor.authorde la Venta, J.
dc.contributor.authorCarmona Tejero, Noemí
dc.contributor.authorLorite, I.
dc.contributor.authorLLopis, J.
dc.contributor.authorFernández, J. F.
dc.date.accessioned2023-06-20T03:57:09Z
dc.date.available2023-06-20T03:57:09Z
dc.date.issued2010-01-15
dc.description© 2010 American Institute of Physics. Lucas Pérez and Manuel Plaza are acknowledged for the help with the magnetic measurements. M.S. Martín-González and J. L. Costa-Krämer are acknowledged for fruitful discussions. This work was supported by the Spanish Council for Scientific Research through Project Nos. CSIC 2006-50F0122 and CSIC 2007-50I015 and Spanish Ministry of Science and Education through Project Nos. MAT2007- 66845-C02-01 and FIS-2008-06249. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank the SpLine CRG beamline staff for assistance during x-ray absorption experiments.
dc.description.abstractWe recently reported the observation of room temperature ferromagnetism in mixtures of ZnO and Co_3O_4 despite the diamagnetic and antiferromagnetic character of these oxides, respectively. Here, we present a detailed study on the electronic structure of this material in order to account for the unexpected ferromagnetism. Electrostatic interactions between both oxides lead to a dispersion of Co_3O_4 particles over the surface of ZnO larger ones. As a consequence, the reduction Co^(+3) -> Co^(2+) at the particle surface takes place as evidenced by x-ray absorption spectroscopy measurements and optical spectroscopy. This reduction allows explaining the observed ferromagnetic signal within the well established theories of magnetism in oxides.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Council for Scientific Research
dc.description.sponsorshipMinistry of Science and Education, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32694
dc.identifier.doi10.1063/1.3294649
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3294649
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44716
dc.issue.number4
dc.journal.titleJournal of applied physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDCSIC 2006-50F0122
dc.relation.projectIDCSIC 2007-50I015
dc.relation.projectIDMAT2007-66845-C02-01
dc.relation.projectIDFIS-2008-06249
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordRoom-temperature
dc.subject.keywordDoped ZnO
dc.subject.keywordSol-gel
dc.subject.keywordFerromagnetism
dc.subject.keywordOxide
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleSurface magnetism in ZnO/Co_3O_4 mixtures
dc.typejournal article
dc.volume.number107
dcterms.references1. J. M. D. Coey and S. A. Chambers, MRS Bull. 33, 1053 2008. 2. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 2001. 3. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillén, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 2003 4. J. M. D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 2006. 5. K. R. Kittilstved and D. R. Gamelin, J. Am. Chem. Soc. 127, 5292 2005. 6. K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 2005. 7. D. Rubi, J. Fontcuberta, A. Calleja, Ll. Aragonès, X. G. Capdevila, and M. Segarra, Phys. Rev. B 75, 155322 2007. 8. M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature London 430, 630 2004. 9. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nature Mater. 6, 493 2007. 10. M. A. García, E. Fernández Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín-González, and J. L. CostaKrämer, J. Appl. Phys. 105, 013925 2009. 11. A. Quesada, M. A. García, M. Andrés, A. Hernando, J. F. Fernández, A. C. Caballero, M. S. Martín-González, and F. Briones, J. Appl. Phys. 100, 113909 2006. 12. M. S. Martín-González, M. A. García, I. Lorite, J. L. Costa-Krämer, F. Rubio-Marcos, N. Carmona, and J. F. Fernández, J. Electrochem. Soc. 157, E31 2010. 13. I. Lorite et al. unpublished. 14. S. Thota, A. Kumar, and J. Kumar, Mater. Sci. Eng., B 164, 30 2009. 15. P. Lommens, F. Loncke, P. F. Smet, F. Callens, D. Poelman, H. Vrielinck, and Z. Hens, Chem. Mater. 19, 5576 2007. 16. M. Zayat and D. Levy, Chem. Mater. 12, 2763 2000. 17. G. Y. Lee, K. H. Ryu, H. G. Kim, and Y. Y. Kim, Bull. Korean Chem. Soc. 30, 373 2009. 18. W. L. Roth, J. Phys. Chem. Solids 25, 1 1964. 19. .C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, and H. Kalt, Superlattices Microstruct. 38 4-6, 209 2005. 20. P. Zhang and T. K. Sham, Appl. Phys. Lett. 81, 736 2002. 21. A. Serrano, E. Fernández Pinel, A. Quesada, I. Lorite, M. Plaza, L. Pérez, F. Jiménez-Villacorta, J. de la Venta, M. S. Martín-González, J. L. CostaKrämer, J. F. Fernández, J. Llopis, and M. A. García, Phys. Rev. B 79, 144405 2009. Octahedral Tetrahedra
dspace.entity.typePublication
relation.isAuthorOfPublication3255ab49-a30c-4e80-a979-23036e378fb8
relation.isAuthorOfPublication.latestForDiscovery3255ab49-a30c-4e80-a979-23036e378fb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carmona Tejero 02 LIBRE.pdf
Size:
639.5 KB
Format:
Adobe Portable Document Format

Collections