Intrinsic metrological resolution as a distance measure and nonclassical light
dc.contributor.author | Rivas, Ángel | |
dc.contributor.author | Luis Aina, Alfredo | |
dc.date.accessioned | 2023-06-20T10:56:30Z | |
dc.date.available | 2023-06-20T10:56:30Z | |
dc.date.issued | 2008-06-10 | |
dc.description | ©2008 The American Physical Society. A.R. acknowledges financial support from the University of Hertfordshire and the EU Integrated Project QAP. A.L. acknowledges support from the Universidad Complutense Project No. PR1-A/07-15378. | |
dc.description.abstract | We elaborate on a Hilbert-Schmidt distance measure assessing the intrinsic metrological accuracy in the detection of signals imprinted on quantum probe states by signal-dependent transformations. For small signals this leads to a probe-transformation measure Lambda fully symmetric on the probe rho and the generator G of the transformation Λ(ρ,G)= Λ(G,ρ). Although Λ can be regarded as a generalization of variance, we show that no uncertainty relation holds for the product of measures corresponding to complementary generators. We show that all states with resolution larger than coherent states are nonclassical. We apply this formalism to feasible probes and transformations. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | University of Hertfordshire | |
dc.description.sponsorship | Unión Europea (UE) | |
dc.description.sponsorship | Universidad Complutense de Madrid (UCM) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31256 | |
dc.identifier.doi | 10.1103/PhysRevA.77.063813 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.77.063813 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51486 | |
dc.issue.number | 6 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.final | 063813_8 | |
dc.page.initial | 063813_1 | |
dc.publisher | American Physical Society | |
dc.relation.projectID | PR1-A/07-15378 | |
dc.relation.projectID | Project QAP | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Hilbert-schmidt distance | |
dc.subject.keyword | Quantum states | |
dc.subject.keyword | Entanglement measures | |
dc.subject.keyword | Projection noise | |
dc.subject.keyword | Classicality | |
dc.subject.keyword | Limit | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Intrinsic metrological resolution as a distance measure and nonclassical light | |
dc.type | journal article | |
dc.volume.number | 77 | |
dcterms.references | [1] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, Phys. Rev. A 47, 3554 (1993); M. Hillery and L. Mlodinow, ibid. 48, 1548 (1993); D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, ibid. 50, 67 (1994); C. Brif and A. Mann, ibid. 54, 4505 (1996); Z. Y. Ou, ibid. 55, 2598 (1997); V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006). [2] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990); J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996); S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997); A. Luis, Phys. Rev. A 64, 054102) (2001); 65, 034102 (2002); Ph. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, Nature (London) 429, 158 (2004); M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, ibid. 429, 161 (2004). [3] A. Luis, Phys. Rev. A 65, 025802 (2002); Phys. Lett. A 329, 8 (2004); Phys. Rev. A 69, 044101 (2004); 76, 035801 (2007); J. Opt. B: Quantum Semiclassical Opt. 6, 1 (2004); J. Beltrán and A. Luis, Phys. Rev. A 72, 045801 (2005); S. M. Roy and S. L. Braunstein, e-print arXiv:quant-ph/0607152, Phys. Rev. Lett. (to be published); S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys. Rev. Lett. 98, 090401 (2007); S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves, Phys. Rev. A 77, 012317 (2008). [4] S. Luo and Q. Zhang, Phys. Rev. A 69, 032106 (2004). [5] S. Luo, Phys. Rev. Lett. 91, 180403 (2003). [6] V. V. Dodonov, O. V. Man’ko, V. I. Man’ko, and A. Wünsche, J. Mod. Opt. 47, 633 (2000); V. V. Dodonov and M. B. Renó, Phys. Lett. A 308, 249 (2003). [7] J. Lee, M. S. Kim, and Č. Brukner, Phys. Rev. Lett. 91, 087902 (2003); R. Filip, Phys. Rev. A 65, 062320 (2002); M. Hendrych, M. Dušek, R. Filip, and J. Fiurášek, Phys. Lett. A 310, 95 (2003). [8] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997); V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998); C. Witte and M. Trucks, Phys. Lett. A 257, 10 (1998); M. Ozawa, ibid. 268, 158 (2000). [9] S. A. Ponomarenko and E. Wolf, Opt. Lett. 26, 122 (2001). [10] S. Chountasis and A. Vourdas, Phys. Rev. A 58, 1794 (1998); S. A. Ponomarenko and E. Wolf, ibid. 63, 062106 (2001); A. Vourdas, ibid. 69, 022108 (2004). [11] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997); L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995). [12] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000); M. Hayashi, Quantum Information: An Introduction (Springer-Verlag, Berlin, 2006). [13] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988); L. M. Johansen and A. Luis, Phys. Rev. A 70, 052115 (2004). [14] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994). [15] S. Luo, Proc. Am. Math. Soc. 132, 885 (2004). [16] S. Luo, Phys. Rev. A 72, 042110 (2005). [17] This is essentially because Eq. (2.28) is derived in Ref. (5) from a nonpositive definite inner product. [18] S. Zozor, M. Portesi, and Ch. Vignat, e-print arXiv:math.PR/0709.3011. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 | |
relation.isAuthorOfPublication.latestForDiscovery | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 |
Download
Original bundle
1 - 1 of 1