On the nullstellensätze for stein spaces and C-analytic sets.
dc.contributor.author | Acquistapace, Francesca | |
dc.contributor.author | Broglia, Fabrizio | |
dc.contributor.author | Fernando Galván, José Francisco | |
dc.date.accessioned | 2023-06-18T06:54:08Z | |
dc.date.available | 2023-06-18T06:54:08Z | |
dc.date.issued | 2016 | |
dc.description.abstract | In this work we prove the real Nullstellensatz for the ring O(X) of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation of Łojasiewicz’s radical in O(X): The ideal I(Ƶ(a)) of the zero-set Ƶ(a) of an ideal a of O(X) coincides with the saturation (Formula presented) of Łojasiewicz’s radical (Formula presented). If Ƶ(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then I(Ƶ(a)) = (Formula presented) where (Formula presented) stands for the real radical of a. The same holds if we replace (Formula presented) with the real-analytic radical (Formula presented) of a, which is a natural generalization of the real radical ideal in the C-analytic setting. We revisit the classical results concerning (Hilbert’s) Nullstellensatz in the framework of (complex) Stein spaces. Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the coherent sheaf that extends aORn to a suitable complex open neighborhood of Rn. We study the relationship between a normal primary decomposition of a and the decomposition of YRn as the union of its irreducible components. If a:= p is prime, then I(Ƶ(p)) = p if and only if the (complex) dimension of YRn coincides with the (real) dimension of Ƶ(p). | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish GAAR | |
dc.description.sponsorship | Italian GNSAGA of INdAM and MIUR | |
dc.description.sponsorship | Department of Algebra at the Universidad Complutense de Madrid | |
dc.description.sponsorship | Department of Mathematics at the Universit`a di Pisa. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/38181 | |
dc.identifier.doi | 10.1090/tran/6436 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.officialurl | http://www.ams.org/journals/tran/2016-368-06/S0002-9947-2015-06436-8/S0002-9947-2015-06436-8.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24540 | |
dc.issue.number | 6 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 3929 | |
dc.page.initial | 3899 | |
dc.publisher | American Mathematical Society | |
dc.relation.projectID | MTM2011-22435 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.5 | |
dc.subject.keyword | Nullstellensatz | |
dc.subject.keyword | Stein space | |
dc.subject.keyword | Closed ideal | |
dc.subject.keyword | Radical | |
dc.subject.keyword | Real Nullstellensatz | |
dc.subject.keyword | C-analytic set | |
dc.subject.keyword | Saturated ideal | |
dc.subject.keyword | Lojasiewicz’s radical | |
dc.subject.keyword | Convex ideal | |
dc.subject.keyword | H-sets | |
dc.subject.keyword | Ha-set | |
dc.subject.keyword | Real ideal | |
dc.subject.keyword | Real radical | |
dc.subject.keyword | Real-analytic ideal | |
dc.subject.keyword | Real-analytic radical | |
dc.subject.keyword | Quasi-real ideal. | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | On the nullstellensätze for stein spaces and C-analytic sets. | |
dc.type | journal article | |
dc.volume.number | 368 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |