Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the nullstellensätze for stein spaces and C-analytic sets.

dc.contributor.authorAcquistapace, Francesca
dc.contributor.authorBroglia, Fabrizio
dc.contributor.authorFernando Galván, José Francisco
dc.date.accessioned2023-06-18T06:54:08Z
dc.date.available2023-06-18T06:54:08Z
dc.date.issued2016
dc.description.abstractIn this work we prove the real Nullstellensatz for the ring O(X) of analytic functions on a C-analytic set X ⊂ Rn in terms of the saturation of Łojasiewicz’s radical in O(X): The ideal I(Ƶ(a)) of the zero-set Ƶ(a) of an ideal a of O(X) coincides with the saturation (Formula presented) of Łojasiewicz’s radical (Formula presented). If Ƶ(a) has ‘good properties’ concerning Hilbert’s 17th Problem, then I(Ƶ(a)) = (Formula presented) where (Formula presented) stands for the real radical of a. The same holds if we replace (Formula presented) with the real-analytic radical (Formula presented) of a, which is a natural generalization of the real radical ideal in the C-analytic setting. We revisit the classical results concerning (Hilbert’s) Nullstellensatz in the framework of (complex) Stein spaces. Let a be a saturated ideal of O(Rn) and YRn the germ of the support of the coherent sheaf that extends aORn to a suitable complex open neighborhood of Rn. We study the relationship between a normal primary decomposition of a and the decomposition of YRn as the union of its irreducible components. If a:= p is prime, then I(Ƶ(p)) = p if and only if the (complex) dimension of YRn coincides with the (real) dimension of Ƶ(p).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish GAAR
dc.description.sponsorshipItalian GNSAGA of INdAM and MIUR
dc.description.sponsorshipDepartment of Algebra at the Universidad Complutense de Madrid
dc.description.sponsorshipDepartment of Mathematics at the Universit`a di Pisa.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38181
dc.identifier.doi10.1090/tran/6436
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/2016-368-06/S0002-9947-2015-06436-8/S0002-9947-2015-06436-8.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24540
dc.issue.number6
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final3929
dc.page.initial3899
dc.publisherAmerican Mathematical Society
dc.relation.projectIDMTM2011-22435
dc.rights.accessRightsrestricted access
dc.subject.cdu517.5
dc.subject.keywordNullstellensatz
dc.subject.keywordStein space
dc.subject.keywordClosed ideal
dc.subject.keywordRadical
dc.subject.keywordReal Nullstellensatz
dc.subject.keywordC-analytic set
dc.subject.keywordSaturated ideal
dc.subject.keywordLojasiewicz’s radical
dc.subject.keywordConvex ideal
dc.subject.keywordH-sets
dc.subject.keywordHa-set
dc.subject.keywordReal ideal
dc.subject.keywordReal radical
dc.subject.keywordReal-analytic ideal
dc.subject.keywordReal-analytic radical
dc.subject.keywordQuasi-real ideal.
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn the nullstellensätze for stein spaces and C-analytic sets.
dc.typejournal article
dc.volume.number368
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Fernando108libre.pdf
Size:
380.01 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Fernando108.pdf
Size:
454.37 KB
Format:
Adobe Portable Document Format

Collections