Distribution of primes and approximation on weighted Dirichlet spaces
Loading...
Official URL
Full text at PDC
Publication date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
We study zero-free regions of the Riemann zeta function ζ related to an approximation problem in the weighted Dirichlet space D−2 which is known to be equivalent to the Riemann Hypothesis since the work of B ́aez-Duarte. We prove, indeed, that analogous approximation problems for the standard weighted Dirichlet spaces Dα when α ∈ (−3, −2) give conditions so that the half-plane {s ∈ C : R(s) > − α+12} is also zero-free for ζ. Moreover, we extend such results to a large family of weighted spaces of analytic functions lp α. As a particular instance, in the limit case p = 1 and α = −2, we provide a new proof of the Prime Number Theorem.