Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial Memory in a Spiking Neural Network with Robot Embodiment

dc.contributor.authorLobov, Sergey A.
dc.contributor.authorZharinov, Alexey I.
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorKazantsev, Victor B.
dc.date.accessioned2023-06-17T08:31:09Z
dc.date.available2023-06-17T08:31:09Z
dc.date.issued2021-04-10
dc.descriptionEste artículo forma parte de un número especial de Robotic Control Based on Neuromorphic Approaches and Hardware
dc.description.abstractCognitive maps and spatial memory are fundamental paradigms of brain functioning. Here, we present a spiking neural network (SNN) capable of generating an internal representation of the external environment and implementing spatial memory. The SNN initially has a non-specific architecture, which is then shaped by Hebbian-type synaptic plasticity. The network receives stimuli at specific loci, while the memory retrieval operates as a functional SNN response in the form of population bursts. The SNN function is explored through its embodiment in a robot moving in an arena with safe and dangerous zones. We propose a measure of the global network memory using the synaptic vector field approach to validate results and calculate information characteristics, including learning curves. We show that after training, the SNN can effectively control the robot’s cognitive behavior, allowing it to avoid dangerous regions in the arena. However, the learning is not perfect. The robot eventually visits dangerous areas. Such behavior, also observed in animals, enables relearning in time-evolving environments. If a dangerous zone moves into another place, the SNN remaps positive and negative areas, allowing escaping the catastrophic interference phenomenon known for some AI architectures. Thus, the robot adapts to changing world.
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77272
dc.identifier.doi10.3390/s21082678
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s21082678
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7347
dc.issue.number8
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial2678
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51
dc.subject.keywordSpiking neural networks
dc.subject.keywordSTDP
dc.subject.keywordLearning
dc.subject.keywordneurorobotics
dc.subject.keywordCognitive maps
dc.subject.keywordVector field of synaptic connections
dc.subject.keywordVector field of functional connections
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleSpatial Memory in a Spiking Neural Network with Robot Embodiment
dc.typejournal article
dc.volume.number21
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
makarov_spatial.pdf
Size:
10.58 MB
Format:
Adobe Portable Document Format

Collections